Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912785PMC
http://dx.doi.org/10.1371/journal.pgen.1007339DOI Listing

Publication Analysis

Top Keywords

destruction complex
48
wnt signaling
16
axin apc2
16
wnt signals
16
destruction
13
complex
13
apc2 levels
12
axin
10
wnt
8
complex wnt
8

Similar Publications

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF

Postoperative infections following orthopedic fixation can lead to devastating consequences, particularly in patients with comorbidities such as diabetes mellitus. We present a rare case of a 61-year-old female patient with a patella fracture treated with tension band wiring who developed a severe polymicrobial infection resulting in complete destruction of the patellar tendon. Multiple debridements, removal of implants, and prolonged targeted antibiotic therapy were necessary.

View Article and Find Full Text PDF

Cytokine pathways driving diverse tissue pathologies in rheumatoid arthritis.

Arthritis Rheumatol

September 2025

College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.

Rheumatoid arthritis is a complex systemic disorder characterised primarily by articular inflammation and destruction with associated functional loss and reduced quality of life. RA is also associated with extra-articular disease e.g.

View Article and Find Full Text PDF

Outer membrane vesicle-coated ferrocene nanoparticles induce dual ferroptosis for cancer immunotherapy.

J Control Release

September 2025

School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:

Fusobacterium nucleatum (Fn.) can colonize breast cancer tissue to promote tumor progression by inducing immunosuppression. Targeted therapeutic strategies against intratumoral bacteria remain unexplored and have potential in tumor immunotherapy.

View Article and Find Full Text PDF

Stimuli-Responsive Luminescent Properties of Dinuclear Cu(I) Complexes Regulated by Hydrogen-Bonding Donors.

Inorg Chem

September 2025

Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.

The selection of hydrogen-bonding donors is crucial for the development of stimuli-responsive luminescent materials that rely on weak hydrogen-bonding interactions. In this study, we report two novel dinuclear Cu(I) complexes, [Cu(μ-η(,),η(,)-dpa)(μ-dppm)](ClO) () and [Cu(μ-η(,),η(,)-dpa)(μ-dppa)](ClO)·2CHCOCH (), which differ in their diphosphine linkers (CH in dppm vs NH in dppa). X-ray crystallography reveals weak CH···O hydrogen bonds between dppm-CH and perchlorate-O in and weak NH···O interactions between dppa-NH and acetone-O in .

View Article and Find Full Text PDF