Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the availability of selective synthetic approaches to multifunctionalized substituted olefins, the cyanothiolation of internal alkynes has been much less explored. Herein, we show that nonactivated internal alkynes can be successfully cyanothiolated with diaryl disulfides and tert-butyl isocyanide in the presence of a Pd catalyst (e.g., Pd(PPh)) with the release of isobutene and arenethiol to afford β-thiolated alkenyl cyanides in yields of 34-89%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b00052DOI Listing

Publication Analysis

Top Keywords

internal alkynes
12
cyanothiolation internal
8
disulfides tert-butyl
8
tert-butyl isocyanide
8
palladium-catalyzed cyanothiolation
4
alkynes organic
4
organic disulfides
4
isocyanide despite
4
despite availability
4
availability selective
4

Similar Publications

In this work, we report the design, synthesis, and application of a hyper-crosslinked heterogeneous organometallic porous organic polymer (Pd@TP-DPPF) catalyst for the efficient and sustainable dicarbofunctionalization of internal alkynes via a facile three-component reaction. This strategy enables the highly trans-selective syntheses of tetrasubstituted olefins in excellent yields. The catalyst is constructed by integrating triptycene (TP) and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) into a robust palladium-based porous framework, resulting in a unique heterogeneous system that efficiently mediates the coupling of internal alkynes with readily available iodoarenes and aryl/methyl boronic acids.

View Article and Find Full Text PDF

A regio-, diastereo-, and enantioselective cobalt-catalyzed C-H activation/annulation of aromatic and alkenyl amides has been developed to access heterocycles featuring vicinal C-C and C-N diaxes. This strategy uniquely harnesses previously unexplored electronically unbiased internal alkynes and proceeds under mild conditions to deliver products in high yields with excellent regio- and stereocontrol.

View Article and Find Full Text PDF

Regiodivergent Ligand-Controlled Cobalt-Catalyzed Reductive Hydroxymethylation of Alkynes with Aqueous Formaldehyde.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.

Allylic alcohols are versatile and essential building blocks in synthetic chemistry, widely used for the preparation of complex molecules, pharmaceuticals, and materials. We report here a regiodivergent reductive hydroxymethylation of terminal alkynes with aqueous formaldehyde to prepare allylic alcohols enabled by visible light photoredox and cobalt dual catalysis. Using readily available, bulk, and cheap aqueous formaldehyde as a simple C1 source, this method allows for the selective production of both linear and branched allylic alcohols in one-step manner.

View Article and Find Full Text PDF

Fragment-based drug discovery typically relies on specialized spectrometric methods to identify low-affinity compounds that bind to biomolecules. Here, we report a proof-of-concept study on the development of a streamlined fragment-based screening platform for small molecules targeting RNA. This method employs low molecular weight fragments appended with a diazirine reactive moiety and an alkyne tag.

View Article and Find Full Text PDF

A highly regioselective gold-catalyzed single oxygen transfer reaction, involving internal trifluoromethylated alkynes, pyridine -oxides, and nitriles, has been developed. The alkyne-attached CF-moiety functions through an inductive mechanism to direct -nucleophilic attack specifically to the β-alkyne position. This three-component transformation yields a diverse array of valuable 4-trifluoromethylated oxazoles in high yields (30 examples; up to 96%) under relatively mild gold-catalyzed conditions, demonstrating significant tolerance for various functional groups.

View Article and Find Full Text PDF