Chromosomal Instability in Hodgkin Lymphoma: An In-Depth Review and Perspectives.

Cancers (Basel)

Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.

Published: March 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study of Hodgkin lymphoma (HL), with its unique microenvironment and long-term follow-up, has provided exceptional insights into several areas of tumor biology. Findings in HL have not only improved our understanding of human carcinogenesis, but have also pioneered its translation into the clinics. HL is a successful paradigm of modern treatment strategies. Nonetheless, approximately 15-20% of patients with advanced stage HL still die following relapse or progressive disease and a similar proportion of patients are over-treated, leading to treatment-related late sequelae, including solid tumors and organ dysfunction. The malignant cells in HL are characterized by a highly altered genomic landscape with a wide spectrum of genomic alterations, including somatic mutations, copy number alterations, complex chromosomal rearrangements, and aneuploidy. Here, we review the chromosomal instability mechanisms in HL, starting with the cellular origin of neoplastic cells and the mechanisms supporting HL pathogenesis, focusing particularly on the role of the microenvironment, including the influence of viruses and macrophages on the induction of chromosomal instability in HL. We discuss the emerging possibilities to exploit these aberrations as prognostic biomarkers and guides for personalized patient management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923346PMC
http://dx.doi.org/10.3390/cancers10040091DOI Listing

Publication Analysis

Top Keywords

chromosomal instability
12
hodgkin lymphoma
8
chromosomal
4
instability hodgkin
4
lymphoma in-depth
4
in-depth review
4
review perspectives
4
perspectives study
4
study hodgkin
4
lymphoma unique
4

Similar Publications

Background: Gastric cancer (GC) is the fourth leading cause of cancer-related death globally. Tumor profiling has revealed actionable gene alterations that guide treatment strategies and enhance survival. Among Hispanics living in Puerto Rico (PRH), GC ranks among the top 10 causes of cancer-related death.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is a heterogeneous kidney malignancy driven by complex genetic, molecular, and metabolic alterations. Emerging evidence implicates centrosome dysfunction and autophagy dysregulation in RCC initiation, progression, and resistance to therapy. The centrosome plays a critical role in mitotic fidelity, and its dysfunction often leads to chromosomal and genomic instability.

View Article and Find Full Text PDF

Objective: The diagnosis of precancerous lesions of colorectal cancer (CRC) presents significant challenges in clinical practice. In this study, we conducted a clinical investigation using the UCAD technique after analyzing chromosomal copy number variations (CNVs) in formalin-fixed, paraffin-embedded (FFPE) samples from various pathological stages, aiming to evaluate the value of detecting chromosomal instability (CIN) in CRC diagnosis.

Methods: Based on colonoscopic pathological findings, we selected 39 FFPE specimens of tubular adenomas, 8 FFPE specimens of villous adenomas, 16 cases diagnosed as tubular-villous adenomas, and 14 cases without defined pathological subtype classification.

View Article and Find Full Text PDF

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF

Glyphosate-based herbicides are the most widely applied pesticides worldwide and have been implicated in the development of certain hematologic malignancies; however, the underlying biological mechanisms are not well-understood. High lifetime use of glyphosate-based herbicides, hereafter referred to as glyphosate, was previously associated with mosaic loss of chromosome Y (mLOY), a biomarker of genomic instability potentially linked to cancer and immune dysregulation, in circulating blood of male farmers from a subcohort of the Agricultural Health Study (AHS). Here, we further investigated the association between glyphosate use and mLOY using buccal-derived DNA among 1,868 male pesticide applicators in an independent AHS study.

View Article and Find Full Text PDF