98%
921
2 minutes
20
Oil and gas (O&G) facilities emit air pollutants that are potentially a major health risk for nearby populations. We characterized prenatal through adult health risks for acute (1 h) and chronic (30 year) residential inhalation exposure scenarios to nonmethane hydrocarbons (NMHCs) for these populations. We used ambient air sample results to estimate and compare risks for four residential scenarios. We found that air pollutant concentrations increased with proximity to an O&G facility, as did health risks. Acute hazard indices for neurological (18), hematological (15), and developmental (15) health effects indicate that populations living within 152 m of an O&G facility could experience these health effects from inhalation exposures to benzene and alkanes. Lifetime excess cancer risks exceeded 1 in a million for all scenarios. The cancer risk estimate of 8.3 per 10 000 for populations living within 152 m of an O&G facility exceeded the United States Environmental Protection Agency's 1 in 10 000 upper threshold. These findings indicate that state and federal regulatory policies may not be protective of health for populations residing near O&G facilities. Health risk assessment results can be used for informing policies and studies aimed at reducing and understanding health effects associated with air pollutants emitted from O&G facilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b05983 | DOI Listing |
Am J Ind Med
September 2025
National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio, USA.
Background: Workers in industry settings are often exposed to complex noise, which poses a greater risk to hearing loss than continuous noise at equivalent energy levels. Previous studies have identified kurtosis as an essential metric for evaluating complex noise-induced hearing loss (NIHL). This study aimed to characterize the distribution of workers exposed to complex noise, examine the associations between kurtosis and changes in hearing thresholds at various frequencies, and explore kurtosis's role in estimating NIHL and its integration into occupational hearing loss prevention programs.
View Article and Find Full Text PDFNutr Clin Pract
September 2025
School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland.
Background: Esophagectomy causes anatomical changes that can lead to rapid food transit and reactive hypoglycemia (RH). Patients are advised on eating patterns postesophagectomy to prevent RH, but its true incidence and the impact of dietary recommendations remain under-researched.
Materials And Methods: Individuals >12 months postesophagectomy were recruited from the National Centre for Oesophageal and Gastric Cancer at St James's Hospital in Dublin, Ireland.
Mol Nutr Food Res
September 2025
Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, China.
The relationship between dietary biotin intake and cognitive function remains unclear. This study explores the association between biotin and dementia, and the mediating role of inflammation indicators. Dietary biotin intake was assessed via the 24-h recall questionnaire.
View Article and Find Full Text PDFNutr Clin Pract
September 2025
Nutrition Department, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Background: Early diagnosis of malnutrition is essential for rapid decision-making regarding nutrition care to improve patient outcomes. We aimed to evaluate the prevalence of malnutrition using the Global Leadership Initiative on Malnutrition (GLIM) criteria and to assess the association of GLIM with 1-year mortality and length of hospital stay (LOS) in patients admitted to an emergency department (ED).
Methods: Prospective cohort study conducted in the ED of a university hospital.
Int J Phytoremediation
September 2025
Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India.
Urbanization and increasing vehicular traffic have intensified air pollution, particularly the accumulation of particulate matter (PM), trace elements (TEs), and polycyclic aromatic hydrocarbons (PAHs) in urban environments. These pollutants pose significant risks to human health, urban ecosystems, and biodiversity. This study evaluates the efficacy of mixed-species vegetation barriers, comprising , , , and , in mitigating air pollution along three road types (highway, urban, and suburban).
View Article and Find Full Text PDF