98%
921
2 minutes
20
Silk fibroin (SF) from Bombyx mori has received increasing interest in biomedical fields, because of its slow biodegradability, good biocompatibility, and low immunogenicity. Although SF-based hydrogels have been studied intensively as a potential matrix for tissue engineering, weak gelation performance and low mechanical strength are major limitations that hamper their widespread applicability. Therefore, searching for new strategies to improve the SF gelation property is highly desirable in tissue engineering research. Herein, we report a facile approach to induce rapid gelation of SF by a small peptide gelator (e.g., NapFF). Following the simple mixing of SF and NapFF in water, a stable hydrogel of SF was obtained in a short time period at physiological pH, and the minimum gelation concentration of SF can reach as low as 0.1%. In this process of gelation, NapFF not only can behave itself as a gelator for supramolecular self-assembly, but also can trigger the conformational transition of the SF molecule from random coil to β-sheet structure via hydrophobic and hydrogen-bonding interactions. More importantly, for the generation of a scaffold with favorable cell-surface interactions, a new peptide gelator (NapFFRGD) with Arg-Gly-Asp (RGD) domain was applied to functionalize SF hydrogel with improved bioactivity for cell adhesion and growth. Following encapsulating the vascular endothelial growth factor (VEGF), the SF gel was subcutaneously injected in mice, and served as an effective matrix to trigger the generation of new blood capillaries in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b01725 | DOI Listing |
Biomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China; Guangzhou Cheer-Derm Biotech Co., Ltd., Guangzhou 510530, People's Republic of China; Guangzhou Huike Biotech
The development of immunologically safe collagen-based hydrogels remains challenging due to risks associated with animal-derived collagens and toxic crosslinkers. Here, we report an eco-friendly hydrogel platform integrating recombinant humanized collagen type III (PCIII) expressed in Pichia pastoris with 4-arm PEG-SS via a one-step green crosslinking strategy. The engineered PEG-PCIII hydrogels exhibit tunable mechanics, enzymatic degradability, and rapid self-gelation through amine-NHS ester conjugation, while curcumin loading endows it with adjustable antioxidant activity.
View Article and Find Full Text PDFUltrason Sonochem
September 2025
College of Food Science and Technology, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, National R&D Branch Center for Conventional Freshwater Fish Processing (W
Previous studies have demonstrated that high-intensity ultrasound (HIU) could enhance the gel properties of salt-reduced (1.5 % NaCl) surimi gels. Understanding its mechanism, particularly the role of key endogenous enzymes, is essential for HIU-assisted modulation of salt-reduced surimi gels with satisfactory textural properties.
View Article and Find Full Text PDFPharmaceuticals (Basel)
July 2025
Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites.
View Article and Find Full Text PDFFoods
August 2025
Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia.
The global transition toward plant-based diets has intensified the search for sustainable protein alternatives, positioning hemp-based meat analogs (HBMAs) as a promising solution due to their exceptional nutritional profile and environmental benefits. This comprehensive review critically examines hemp protein research, focusing on extraction technologies, nutritional excellence, functional innovation, and sustainable processing approaches for meat analog development. Hemp seeds contain 25-30% protein, primarily consisting of highly digestible edestin and albumin proteins that provide a complete amino acid profile comparable to soy and animal proteins.
View Article and Find Full Text PDF