Decreased Cerebral Blood Flow in Mesial Thalamus and Precuneus/PCC during Midazolam Induced Sedation Assessed with ASL.

Neuroinformatics

Department of Radiology, Xuanwu Hospital, Capital Medical University, 45 Chang Chun Street, Xuan Wu District, Beijing, 100053, China.

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While some previous work suggests that midazolam-induced light sedation results from the functional disconnection within resting state network, little is known about the underlying alterations of cerebral blood flow (CBF) associated with its effects. A randomized, double-blind, within-subject, cross-over design was adopted, while 12 healthy young volunteers were scanned with arterial spin-labeling (ASL) perfusion MRI both before and after an injection of either saline or midazolam. The contrast of MRI signal before and after midazolam administration revealed the CBF decrease in the bilateral mesial thalamus and precuneus/posterior cingulate cortex (PCC). These effects were confirmed after controlling for any effect of injection as well as head motions. These findings provide new evidences that midazolam-induced light sedation is related to the disruption of cortical functional integration, and have new implications to the neural basis of consciousness.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12021-018-9368-yDOI Listing

Publication Analysis

Top Keywords

cerebral blood
8
blood flow
8
mesial thalamus
8
midazolam-induced light
8
light sedation
8
decreased cerebral
4
flow mesial
4
thalamus precuneus/pcc
4
precuneus/pcc midazolam
4
midazolam induced
4

Similar Publications

PET/CT imaging of the late-gestation fetal brain in pregnant rats: A proof-of-concept study.

J Cereb Blood Flow Metab

September 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Preclinical PET studies offer the opportunity to elucidate molecular mechanisms underlying early neurodevelopment with minimal invasiveness. We demonstrated the feasibility of fetal brain PET in four pregnant rats ( = 42 fetuses). [F]FDG uptake in rat fetuses was readily visualized by PET imaging.

View Article and Find Full Text PDF

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating neurological disease, and one of the primary drivers of morbidity after aneurysm rupture is the phenomenon of delayed cerebral ischemia (DCI). Significant knowledge has been gained over the past two decades of the impact of neuroinflammation in DCI; and neutrophils are now believed to play a major role. There is significant human subject data showing the rise of neutrophil related inflammatory markers and neutrophil's association with poor outcome after aSAH, but as of yet no trials involving human subjects have been done specifically targeting neutrophils.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF

Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF