98%
921
2 minutes
20
The remarkable heterogeneity of glioblastoma, across patients and over time, is one of the main challenges in precision diagnostics and treatment planning. Non-invasive in vivo characterization of this heterogeneity using imaging could assist in understanding disease subtypes, as well as in risk-stratification and treatment planning of glioblastoma. The current study leveraged advanced imaging analytics and radiomic approaches applied to multi-parametric MRI of de novo glioblastoma patients (n = 208 discovery, n = 53 replication), and discovered three distinct and reproducible imaging subtypes of glioblastoma, with differential clinical outcome and underlying molecular characteristics, including isocitrate dehydrogenase-1 (IDH1), O-methylguanine-DNA methyltransferase, epidermal growth factor receptor variant III (EGFRvIII), and transcriptomic subtype composition. The subtypes provided risk-stratification substantially beyond that provided by WHO classifications. Within IDH1-wildtype tumors, our subtypes revealed different survival (p < 0.001), thereby highlighting the synergistic consideration of molecular and imaging measures for prognostication. Moreover, the imaging characteristics suggest that subtype-specific treatment of peritumoral infiltrated brain tissue might be more effective than current uniform standard-of-care. Finally, our analysis found subtype-specific radiogenomic signatures of EGFRvIII-mutated tumors. The identified subtypes and their clinical and molecular correlates provide an in vivo portrait of phenotypic heterogeneity in glioblastoma, which points to the need for precision diagnostics and personalized treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865162 | PMC |
http://dx.doi.org/10.1038/s41598-018-22739-2 | DOI Listing |
BMC Psychol
September 2025
Institute of Psychology, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany.
Background: Competence and control beliefs are core self-evaluations with increasing value as predictors (e.g., in clinical, organizational, environmental, and educational psychology), and they are assumed to have a universal core that is shared across cultures.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2025
Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China.
Microbiome dysbiosis in reflux esophagitis has been extensively studied. However, limited research has examined microbiota across different segments of the upper gastrointestinal tract in reflux esophagitis. In this study, we investigated microbial alterations in three esophageal segments (upper, middle, and lower) and the gastric fundus of reflux esophagitis patients and healthy controls.
View Article and Find Full Text PDFOral Radiol
September 2025
Department of Oral and Maxillofacial Radiology, Eskisehir Osmangazi University, Meşelik Campus, Büyükdere Neighborhood, Prof. Dr. Nabi Avcı Boulevard No:4, Odunpazarı, Eskişehir, 26040, Turkey.
Objectives: The primary objective of this study is to evaluate the effectiveness of artificial intelligence-assisted segmentation methods in detecting carotid artery calcification (CAC) in panoramic radiographs and to compare the performance of different YOLO models: YOLOv5x-seg, YOLOv8x-seg, and YOLOv11x-seg. Additionally, the study aims to investigate the association between patient gender and the presence of CAC, as part of a broader epidemiological analysis.
Methods: In this study, 30,883 panoramic radiographs were scanned.
Cancer Immunol Immunother
September 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.
View Article and Find Full Text PDF