98%
921
2 minutes
20
A multiresidue analytical method was developed for grapes for the following 24 plant growth regulators: 1-naphthylacetamide, 2,3,5-triiodobenzoic acid, 2,4,5-T, 2-naphthoxyacetic acid, 3-indolylacetic acid, 4-(3-indolyl)-butyric acid, 4-chlorophenoxyacetic acid, 4-nitrophenol, 6-benzylaminopurine, N6-isopentenyladenine, butralin, chlormequat chloride, chlorphonim-Cl, cloprop, forchlorfenuron, gibberellic acid 3, gibberellic acid 4, gibberellic acid 7, inabenfide, mepiquat chloride, paclobutrazol, prohydrojasmon, thidiazuron and uniconizole-P. The compounds were extracted from grape samples using an extraction method modified from the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. Liquid chromatography - tandem mass spectrometry was used for the detection and quantification of the compounds. Validation of the method was performed by using recovery studies at both intra-day and inter-day intervals, as well as by evaluation of the matrix effect, limit of quantification, trueness and precision. We used matrix-matched calibrations for the quantification of the compounds, which all resulted in determination coefficients (r) higher than 0.995. The limit of quantification ranged from 0.1 to 5 ng/mL. Recovery studies using three spiking concentrations at varying levels showed recoveries of 70.2-112.6% and 67.5-101.8% at intra-day and inter-day intervals, respectively. Relative standard deviations were below 20% for the recovery studies. The extraction method were further validated by performing recovery study and matrix effect test in six different grape varieties from Taiwan and the United States and all resulted in comparable results. Application of the established method to 50 grape samples, resulted in the detection of chlormequat chloride and forchlorfenuron residues in the tested grapes. The results of the method validation and real sample analysis shows the extraction method is therefore suitable for routine monitoring of residue in grapes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322231 | PMC |
http://dx.doi.org/10.1016/j.jfda.2017.08.001 | DOI Listing |
J Plant Physiol
September 2025
Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
Weeds are one of the major constraints for wheat productivity, causing significant yield losses worldwide. While chemical control is the most used practice to overcome weed damage, its efficacy is challenged by increasing weed resistance to most used herbicides, which is an expanding phenomenon caused by herbicide overuse/misuse. Modern wheat varieties are less able to perceive the presence of weeds than old varieties and are therefore less competitive against them and require chemical control to ensure adequate yields.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China.
To explore the role of WRKY transcription factors in resistance, a WRKY15 homologous gene, CsWRKY15, and its promoter were isolated from tea plants when intercropped with chestnut. CsWRKY15 expression was significantly induced by ethephon, polyethylene glycol (PEG), and low temperature. Notably, its expression was strongly induced by exogenous gibberellic acid (GA3).
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Horticulture, Michigan State University, East Lansing, MI, United States.
Plant growth regulators (PGRs) include natural and synthetic plant phytohormones and other substances with the capacity to shape one or more aspects of plant growth and development at small concentrations. PGRs are commonly utilized in tree fruit and table grape production to reduce fruit set (thinning) and increase fruit size, coloration, and quality. However, use of PGRs in the production of berry crops, such as blueberry, is less common despite the abundance of production issues and the breadth of PGRs generally registered for fruit crops.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Mollasani, Iran.
Knowledge of the germination ecology of weed species provides information about their potential aggressiveness and helps develop effective weed management strategies. Therefore, the influence of gibberellic acid (GA) and environmental factors (temperature, light, osmotic stress, salinity, cutting times, and seed burial depth) was evaluated on seed germination and seedling emergence of Urospermum picroides a winter annual weed. The results indicated that maximum seed germination was 94% and 83% when seeds were soaked for 12 and 24 h with 1000 and 800 ppm of GA, respectively.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
Variegated is a highly valued ornamental plant sought after in local and international markets. The commercial production of variegated through traditional propagation methods faces significant challenges, such as low propagation rates and prolonged growth periods. This study aims to develop effective in vitro propagation techniques for variegated through asymbiotic seed germination to enhance production efficiency and meet market demand.
View Article and Find Full Text PDF