Development of a Flow Photochemical Aerobic Oxidation of Benzylic C-H Bonds.

Org Lett

UCB Biopharma , Avenue de l'industrie , 1420 Braine l'Alleud , Belgium.

Published: April 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A continuous mesofluidic process has been developed for benzylic C-H oxidation with moderate to good yields using a photocatalyst (riboflavin tetraacetate, RFT) activated by a UV lamp and an iron additive [Fe(ClO)] via incorporation of singlet oxygen (O) for the direct formation of oxidized C═O or CH-OH compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.8b00540DOI Listing

Publication Analysis

Top Keywords

benzylic c-h
8
development flow
4
flow photochemical
4
photochemical aerobic
4
aerobic oxidation
4
oxidation benzylic
4
c-h bonds
4
bonds continuous
4
continuous mesofluidic
4
mesofluidic process
4

Similar Publications

We describe a photomediated protocol for the trifluoromethoxylation of benzylic, aldehydic, and non-activated C-H bonds, using bis(trifluoromethyl)peroxide (BTMP, (FCO)) as the key reagent. Under catalyst-free conditions in acetone, this reaction proceeds with selective functionalization of benzylic methylene groups. Furthermore, by using tetrabutylammonium decatungstate as a photocatalyst, the scope extends to include both non-activated methylene C(sp)-H and formyl C(sp)-H bonds.

View Article and Find Full Text PDF

Visible Light-Driven Benzylic C(sp)-H Carboxylation Enables Synthesis of C-Labeled (±)-α-Amino Acids with C-Formate.

Org Lett

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Polyolefins and Catalysis, State Key Laboratory of Synergistic Chem-Bio Synthesis, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.

C-labeled α-amino acids are important molecules in biological studies and drug development. Cost-effective synthesis of α-amino acids with a high level of C incorporation under mild conditions remains limited. Herein, we report the development of a benzylic C(sp)-H carboxylation method to prepare highly C-labeled α-amino acids, i.

View Article and Find Full Text PDF

Polytantalotungstates Stabilized Iron Catalysts for Carbonylation of Benzylic C-H Bonds.

Inorg Chem

September 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

Selective oxidation of benzylic C(sp)-H bonds to ketones is critical to the production of fine chemicals but typically requires toxic/precious metal catalysts under harsh conditions. While iron-based complexes have recently served as catalysts for photocatalytic C-H bond activation, most systems operate via homogeneous catalysis. Developing a light-driven strategy under visible light with O as an oxidant is of major importance.

View Article and Find Full Text PDF

Enantioselective C-H amination catalyzed by homoleptic iron salox complexes.

Chem Commun (Camb)

September 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland.

Iron complexes bearing chiral salicyloxazoline (Salox) ligands catalyze the enantioselective intramolecular C-H bond amination of alkyl azides, reaching 58-76% ee for benzylic C-H bonds. Further, for the first time aliphatic C-H bond amination is demonstrated (∼40% ee). This class of catalysts even activates primary aliphatic C-H bonds, albeit with moderate ee.

View Article and Find Full Text PDF

Activating dioxygen for the selective oxidation of alkanes remains a significant challenge in chemical synthesis. A key limitation lies in identifying efficient electron donors that can partially reduce and thus activate dioxygen while remaining stable in the presence of the resulting reactive oxygen species. Additionally, uncontrolled radical pathways often compromise chemoselectivity in reactions where O is used as oxidant.

View Article and Find Full Text PDF