98%
921
2 minutes
20
Contemporary studies demonstrate that rodent bites do not occur frequently. However, a huge number of cases were reported from Peshawar vale, Pakistan during 2016. Two species, the local black rat Rattus rattus (Linnaeus, 1758) and the invasive brown rat Rattus norvegicus (Berkenhout, 1769) might be the suspected cause. Several studies indicated the invasion of brown rats into Pakistan presumably via port city of Karachi. In this study, we modeled geospatial distribution of rodent bites for risk assessment in the region. Bite cases reported to tertiary care lady reading hospital were monitored from January 1 to August 31, 2016. Among 1747 cases, statistically informative data (n = 1295) was used for analyses. MaxEnt algorithm was employed for geospatial modeling, taking into account various environmental variables (temperature, precipitation, humidity, and elevation) and anthropogenic factors (human population density, distance from roads, distance from water channels, and land use/land cover). MaxEnt results revealed that urban slums (84.5%) are at highest risk followed by croplands (10.9%) and shrublands (2.7%). Anthropogenic factors affecting incidence of rodent bites included host density (contribution: 34.7), distance from water channels (3.2), land use/land cover (2.8), and distance from roads (2). Most of the cases occurred within a radius of 0.3 km from roads and 5 km from water channels. Rodent bite incidence is currently at its peak in Peshawar vale. Factors significantly affecting rodents' bite activity and their distribution and dispersal include urbanization, distance from roads, and water channels. Further studies are needed to determine the impact of invasion by brown rat on bite incidence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-018-6605-7 | DOI Listing |
PLoS One
September 2025
Faculty of Environment, University of Tehran, Tehran, Iran.
Designing sustainable Flood Control Systems (FCSs) requires considering both the resiliency of the system and the long-term viability of investments. In this regard, our research aimed at integrating concepts of hydrological resiliency and cost-benefit analysis to design the most effective flood control network. To do so, first, the Storm Water Management Model (SWMM) was developed for simulating flood condition.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China.
Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium.
We model Auger spectra using second-order Møller-Plesset perturbation (MP2) theory combined with complex-scaled basis functions. For this purpose, we decompose the complex MP2 energy of the core-hole state into contributions from specific decay channels and propose a corresponding equation-of-motion (EOM) method for computing the doubly ionized final states of Auger decay. These methods lead to significant savings in computational cost compared to our recently developed approaches based on coupled-cluster theory [F.
View Article and Find Full Text PDFAdv Mater
September 2025
Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.
View Article and Find Full Text PDFLangmuir
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.
Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.
View Article and Find Full Text PDF