Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contemporary studies demonstrate that rodent bites do not occur frequently. However, a huge number of cases were reported from Peshawar vale, Pakistan during 2016. Two species, the local black rat Rattus rattus (Linnaeus, 1758) and the invasive brown rat Rattus norvegicus (Berkenhout, 1769) might be the suspected cause. Several studies indicated the invasion of brown rats into Pakistan presumably via port city of Karachi. In this study, we modeled geospatial distribution of rodent bites for risk assessment in the region. Bite cases reported to tertiary care lady reading hospital were monitored from January 1 to August 31, 2016. Among 1747 cases, statistically informative data (n = 1295) was used for analyses. MaxEnt algorithm was employed for geospatial modeling, taking into account various environmental variables (temperature, precipitation, humidity, and elevation) and anthropogenic factors (human population density, distance from roads, distance from water channels, and land use/land cover). MaxEnt results revealed that urban slums (84.5%) are at highest risk followed by croplands (10.9%) and shrublands (2.7%). Anthropogenic factors affecting incidence of rodent bites included host density (contribution: 34.7), distance from water channels (3.2), land use/land cover (2.8), and distance from roads (2). Most of the cases occurred within a radius of 0.3 km from roads and 5 km from water channels. Rodent bite incidence is currently at its peak in Peshawar vale. Factors significantly affecting rodents' bite activity and their distribution and dispersal include urbanization, distance from roads, and water channels. Further studies are needed to determine the impact of invasion by brown rat on bite incidence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-018-6605-7DOI Listing

Publication Analysis

Top Keywords

water channels
16
peshawar vale
12
rodent bites
12
distance roads
12
risk assessment
8
cases reported
8
rat rattus
8
brown rat
8
invasion brown
8
anthropogenic factors
8

Similar Publications

Designing sustainable Flood Control Systems (FCSs) requires considering both the resiliency of the system and the long-term viability of investments. In this regard, our research aimed at integrating concepts of hydrological resiliency and cost-benefit analysis to design the most effective flood control network. To do so, first, the Storm Water Management Model (SWMM) was developed for simulating flood condition.

View Article and Find Full Text PDF

Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.

View Article and Find Full Text PDF

We model Auger spectra using second-order Møller-Plesset perturbation (MP2) theory combined with complex-scaled basis functions. For this purpose, we decompose the complex MP2 energy of the core-hole state into contributions from specific decay channels and propose a corresponding equation-of-motion (EOM) method for computing the doubly ionized final states of Auger decay. These methods lead to significant savings in computational cost compared to our recently developed approaches based on coupled-cluster theory [F.

View Article and Find Full Text PDF

Decoupling Transport of Salt Ions and Water in Hierarchically Structured Hydrogel for High Salinity Desalination.

Adv Mater

September 2025

Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.

View Article and Find Full Text PDF

Quasielastic and Inelastic Neutron Scattering Study of Ultraconfined Water in Natural Mordenite ((Ca,Na,K)AlSiO·7HO).

Langmuir

September 2025

Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.

Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.

View Article and Find Full Text PDF