A Context-Dependent Role for αv Integrins in Regulatory T Cell Accumulation at Sites of Inflammation.

Front Immunol

MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research, BHF Centre for Cardiovascular Science, and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several inflammatory diseases including multiple sclerosis and inflammatory bowel disease have been associated with dysfunctional and/or reduced numbers of Foxp3 regulatory T cells (Treg). While numerous mechanisms of action have been discovered by which Treg can exert their function, disease-specific Treg requirements remain largely unknown. We found that the integrin αv, which can pair with several β subunits including β8, is highly upregulated in Treg at sites of inflammation. Using mice that lacked αv expression or β8 expression specifically in Treg, we demonstrate that there was no deficit in Treg accumulation in the central nervous system during experimental autoimmune encephalomyelitis and no difference in the resolution of disease compared to control mice. In contrast, during a curative T cell transfer model of colitis, Treg lacking all αv integrins were found at reduced proportions and numbers in the inflamed gut. This led to a quantitative impairment in the ability of αv-deficient Treg to reverse disease when Treg numbers in the inflamed colon were below a threshold. Increase of the number of curative Treg injected was able to rescue this phenotype, indicating that αv integrins were not required for the immunosuppressive function of Treg . In accordance with this, αv deficiency did not impact on the capacity of Treg to suppress proliferation of naive conventional T cells as well as . These observations demonstrate that despite the general upregulation of αv integrins in Treg at sites of inflammation, they are relevant for adequate Treg accumulation only in specific disease settings. The understanding of disease-specific mechanisms of action by Treg has clear implications for Treg-targeted therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834440PMC
http://dx.doi.org/10.3389/fimmu.2018.00264DOI Listing

Publication Analysis

Top Keywords

αv integrins
16
treg
15
sites inflammation
12
mechanisms action
8
treg sites
8
treg accumulation
8
numbers inflamed
8
αv
7
context-dependent role
4
role αv
4

Similar Publications

Mitochondrial dysfunction and lipid metabolic disturbance may promote pathologic α-synuclein (α-syn) aggregation, accelerating the progression of Parkinson's disease (PD). Whether extracellular matrices are associated with those pathological mechanisms in PD remains elusive. Here, we aimed to identify if cellular fibronectin (cFn), a component of extracellular matrices, contributes to α-syn abnormality via inducing mitochondrial energy depletion or disrupting lipid homeostasis.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is associated with a variety of retinal diseases, resulting in loss of the number of ganglion cells (RGCs), retinal structural disorders, and retinal dysfunction. The Reelin protein is an important regulator of neuronal migration and synaptogenesis, and the Reln signaling pathway plays an essential role in regulating the targeted projection of RGC dendrites and neuronal survival, which has not been reported in retinal I/R injury. The aim of this study was to investigate the expression, role and mechanism of Reln in retinal I/R injury.

View Article and Find Full Text PDF

Full recovery from spinal cord injury requires axon regeneration to re-establish motor and sensory pathways. In mammals, the failure of sensory and motor axon regeneration has many causes intrinsic and extrinsic to neurons, amongst which is the lack of adhesion molecules needed to interact with the damaged spinal cord. This study addressed this limitation by expressing the integrin adhesion molecule α9, along with its activator kindlin-1, in sensory neurons via adeno-associated viral (AAV) vectors.

View Article and Find Full Text PDF

NELL2, a novel osteoinductive factor, regulates osteoblast differentiation and bone homeostasis through fibronectin 1/integrin-mediated FAK/AKT signaling.

Bone Res

April 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Neural EGFL-like 2 (NELL2) is a secreted protein known for its regulatory functions in the nervous and reproductive systems, yet its role in bone biology remains unexplored. In this study, we observed that NELL2 was diminished in the bone of aged and ovariectomized (OVX) mice, as well as in the serum of osteopenia and osteoporosis patients. In vitro loss-of-function and gain-of-function studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells.

View Article and Find Full Text PDF

Engineering sialylated N-glycans on adeno-associated virus capsids for targeted gene delivery and therapeutic applications.

J Control Release

April 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejia

Glycans with diverse biological functions have been extensively identified on enveloped viruses, whereas glycosylation on adeno-associated virus (AAV) serotypes remains poorly understood. Identifying potential glycosylation sites on AAVs could provide critical docking sites for rational engineering of AAV capsids, enabling targeted delivery of therapeutic genes. This study presents a strategy that integrates azido-monosaccharide metabolic incorporation, 1,2-diamino-4,5-methylenedioxybenzene-labeled sialic acid analysis, and mass spectrometry to identify N-glycosylation sites and glycoforms on AAVs.

View Article and Find Full Text PDF