Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Premature birth is a significant health care burden. Xenon (Xe) is a general anesthetic with neuroprotective effects.

Objectives: Here, we investigate the neuroprotective role of Xe in a lipopolysaccharide (LPS)- and hypoxia-ischemia (HI)-induced white matter damage (WMD) model.

Methods: Three-day-old Sprague-Dawley rats were randomly divided into a sham group (group A, n = 24), an LPS + HI group (group B, n = 24), and an LPS + HI + Xe group (group C, n = 72). The onset of Xe inhalation started at 0, 2, and 5 h in subgroups C1, C2, and C3, respectively. Next, we performed TUNEL and hematoxylin and eosin (HE) staining; and examined the expression of CLIC4 and Bcl-2 in brain tissues.

Results: HE staining revealed distorted cytoarchitecture, tangled nerve fibers, and pyknosis in group B, while Xe treatment improved these histological alterations in the group C pups. Following LPS and HI insult, the number of apoptotic cells significantly increased in group B at 48 and 72 h (p < 0.05), and Xe significantly alleviated apoptosis (p < 0.001) at 24, 48, and 72 h, respectively. Similarly, CLIC4 mRNA expression was significantly increased in group B (p < 0.05), and Xe produced a marked reduction in CLIC4 mRNA expression in group C subgroups (p < 0.05). Western blotting demonstrated enhanced Bcl-2 expression in group C when compared to group B (p < 0.05).

Conclusions: These results demonstrate that LPS and HI successfully induced WMD, and Xe decreased neuronal apoptosis via Bcl-2- and CLIC4-mediated pathways. Moreover, the therapeutic time window of Xe extended for up to 5 h. These findings suggest that Xe can be used as a protective treatment for WMD in premature infants.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000487220DOI Listing

Publication Analysis

Top Keywords

group
13
group group
12
clic4 bcl-2
8
bcl-2 expression
8
white matter
8
matter damage
8
group lps
8
lps group
8
increased group
8
group 005
8

Similar Publications

Associations between element mixtures and biomarkers of pathophysiologic pathways related to autism spectrum disorder.

J Trace Elem Med Biol

September 2025

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.

Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.

View Article and Find Full Text PDF

Our research aims to ascertain the value of precursor and outgrowth lepidic in aiding the confirmation of multiple lung adenocarcinomas as separate primary lung cancers (SPLC). A total of 151 patients with metachronous multiple invasive adenocarcinomas were included in this study. Driver mutation tests(at least five genes: EGFR, ALK, KRAS, BRAF, and ROS1) were conducted on 302 tumors collected from 151 patients.

View Article and Find Full Text PDF

Potassium Hydroxide as a Cost-Effective Catalyst for Broad-Scope Silylation with TMSCF.

J Org Chem

September 2025

Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland; https://www.kucinskilab.com.

The development of efficient and broadly applicable silylation methodologies remains a central goal in synthetic organic and organosilicon chemistry. Traditionally, silylation reactions employ chlorosilanes or hydrosilanes, often necessitating the use of moisture-sensitive and corrosive reagents. Herein, we report a high-yielding, operationally simple, rapid, and economical silylation platform based on trifluoromethyltrimethylsilane (TMSCF) and catalytic potassium hydroxide (KOH).

View Article and Find Full Text PDF