Mini-review on CRISPR-Cas9 and its potential applications to help controlling neglected tropical diseases caused by Trypanosomatidae.

Infect Genet Evol

CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France. Electronic address:

Published: September 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The CRISPR-Cas system, which was originally identified as a prokaryotic defense mechanism, is increasingly being used for the functional study of genes. This technology, which is simple, inexpensive and efficient, has aroused a lot of enthusiasm in the scientific community since its discovery, and every month many publications emanate from very different communities reporting on the use of CRISPR-Cas9. Currently, there are no vaccines to control neglected tropical diseases (NTDs) caused by Trypanosomatidae, particularly Human African Trypanosomiasis (HAT) and Animal African Trypanosomoses (AAT), and treatments are cumbersome and sometimes not effective enough. CRISPR-Cas9 has the potential to functionally analyze new target molecules that could be used for therapeutic and vaccine purposes. In this review, after briefly describing CRIPSR-Cas9 history and how it works, different applications on diseases, especially on parasitic diseases, are reviewed. We then focus the review on the use of CRISPR-Cas9 editing on Trypanosomatidae parasites, the causative agents of NTDs, which are still a terrible burden for human populations in tropical regions, and their vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2018.02.030DOI Listing

Publication Analysis

Top Keywords

crispr-cas9 potential
8
neglected tropical
8
tropical diseases
8
caused trypanosomatidae
8
mini-review crispr-cas9
4
potential applications
4
applications help
4
help controlling
4
controlling neglected
4
diseases
4

Similar Publications

Osteocalcin promotes mineralization in bone microenvironment via regulating hydroxyapatite formation and integration.

Int J Biol Macromol

September 2025

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic

Within the bone microenvironment, the intricate interplay and regulation among matrix components form a complex network. Disentangling this network is crucial for uncovering potential therapeutic targets in bone pathology. Osteocalcin (OCN), the most abundant non-collagenous bone protein, is an essential node within this network.

View Article and Find Full Text PDF

CircRNA knockout/knockdown tools in molecular biology research.

Biochem Biophys Res Commun

September 2025

Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China. Electronic address:

Circular RNAs (circRNAs), characterized by their covalently closed circular architecture, represent a unique class of endogenous RNA molecules that serve as pivotal regulators in post-transcriptional gene regulation in organisms. Accumulating evidence has established their potential as promising diagnostic biomarkers across various human pathologies, including but not limited to malignant neoplasms, neurodegenerative disorders, and metabolic dysregulation.By inhibiting circRNA expression, we can better understand their functions and their impact on related biological processes.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated editing of COQ4 in induced pluripotent stem cells: A model for investigating COQ4-associated human coenzyme Q deficiency.

Stem Cell Res

September 2025

Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:

Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.

View Article and Find Full Text PDF

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

genome editing with CRISPR-Cas9 systems is generating worldwide attention and enthusiasm for the possible treatment of genetic disorders. However, the consequences of potential immunogenicity of the bacterial Cas9 protein and the AAV capsid have been the subject of considerable debate. Here, we model the antigen presentation in cells after gene editing by transduction of a human cell line with an AAV2 vector that delivers the Cas9 transgene.

View Article and Find Full Text PDF