Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Breast cancer (BC) is the most common neoplasm in women, with 5%-10% patients showing a familial predisposition, where germline mutations in BRCA1/BRCA2 genes are found in -20% of cases. Next-generation sequencing (NGS) is among the best available options for genetic screening, providing several benefits that include enhanced sensitivity and unbiased mutation detection. PALB2 (partner and localizer of BRCA2) is a cancer predisposing gene recently described that encodes a protein partner of BRCA2 involved in DNA double-strand break repair and cell cycle control. The DNA damage response represents a key cellular event, targeted by innovative anticancer therapies, including those based on poly (ADP-ribose) polymerase (PARP) inhibitors targeting PARP1 and PARP2 enzymes, activated by DNA damage and involved in single-strand break and base excision repair.

Methods: Genomic DNA was isolated from 34 patient samples and four BC cell lines, as controls, and 27 breast cancer predisposing genes belonging to the BRCA1/BRCA2 and PARP pathways were sequenced by NGS.

Results: The panel described here allowed identification of several sequence variations in most investigated genes, among which we found a novel truncating mutation in PALB2.

Conclusions: The NGS-based strategy designed here for molecular analysis of a customized panel of BC predisposing and related genes was found to perform effectively, providing a comprehensive exploration of all genomic sequences of the investigated genes. It is thus useful for BC molecular diagnosis, in particular for familiar cases where alterations in routinely investigated genes, such as BRCAs, result to be absent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817177PMC
http://dx.doi.org/10.1002/jcla.22418DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
investigated genes
12
novel truncating
8
truncating mutation
8
cancer predisposing
8
dna damage
8
predisposing genes
8
genes
7
identification novel
4
mutation palb2
4

Similar Publications

Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.

Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF