Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fonsecaea pedrosoi (F. pedrosoi) is the most common agent of chromoblastomycosis. Transformation of this fungus from its saprophytic phase into pathogenic sclerotic cells in tissue is an essential link to the refractoriness of this infection. Experimental studies in murine models have shown that the absence of CD4+ T cells impairs host defense against F. pedrosoi infection. Clinical research has also suggested that a relatively low level of the Th1 cytokine INF-γ and inefficient T cell proliferation are simultaneously present in patients with severe chromoblastomycosis upon in vitro stimulation with ChromoAg, an antigen prepared from F. pedrosoi. In the present study, we show that in mice intraperitoneally infected with F. pedrosoi-spores, -hyphae or in vitro-induced sclerotic cells respectively, the transformation of this causative agent into sclerotic cells contributes to a compromised Th1 cytokine production in the earlier stage of infection with impaired generation of neutrophil reactive oxygen species (ROS) and pan-inhibition of Th1/Th2/Th17 cytokine production with disseminated infection in the later stage by using a CBA murine Th1/Th2/Th17 cytokine kit. In addition, we have further demonstrated that intraperitoneal administration of recombinant mouse IFN-γ (rmIFN-γ) effectively reduces the fungal load in the infected mouse spleen, and dampens the peritoneal dissemination of F. pedrosoi-sclerotic cells. Meanwhile, exogeneous rmIFN-γ contributes to the formation and maintenance of micro-abscess and restores the decrease in neutrophil ROS generation in the mouse spleen infected with F. pedrosoi-sclerotic cells. Of note, we have once again demonstrated that it is a chitin-like component, but not β-glucans or mannose moiety, that exclusively accumulates on the outer cell wall of F. pedrosoi-sclerotic cells which were induced in vitro or isolated from the spleens of intraperitoneally infected BALB/c mice. In addition, our results indicate that decreased accumulation of chitin on the surface of live F. pedrosoi-sclerotic cells after chitinase treatment can be self-compensated in a time-dependent manner. Importantly, we have for the first time demonstrated that exclusive accumulation of chitin on the transformed sclerotic cells of F. pedrosoi is involved in an impaired murine Th1 cytokine profile, therefore promoting the refractoriness of experimental murine chromoblastomycosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843349PMC
http://dx.doi.org/10.1371/journal.pntd.0006237DOI Listing

Publication Analysis

Top Keywords

sclerotic cells
20
pedrosoi-sclerotic cells
16
th1 cytokine
12
cells
10
fonsecaea pedrosoi
8
refractoriness experimental
8
balb/c mice
8
intraperitoneally infected
8
cytokine production
8
th1/th2/th17 cytokine
8

Similar Publications

Background And Objectives: Myelitis is a relatively common clinical entity for neurologists, with diverse underlying causes. The aim of this study was to describe the incidence of myelitis, its causes, clinical presentation, and factors predicting functional outcomes and relapses.

Methods: Using the Swedish National Patient Registry, we identified all adult patients in Stockholm County between 2008 and 2018 using International Classification of Diseases, 10th Edition (ICD-10) codes likely to include myelitis.

View Article and Find Full Text PDF

IL-17A is a pro-inflammatory cytokine that significantly contributes to the pathogenesis of autoimmune diseases, including multiple sclerosis (MS). Previous studies have suggested that PARP-1 inhibitors can modulate IL-17A-mediated inflammation, prompting the investigation of Niraparib, an FDA-approved PARP-1 inhibitor, as a potential therapeutic agent for MS. In this study, we hypothesized that Niraparib could disrupt the interaction between IL-17A and its receptor, IL-17RA.

View Article and Find Full Text PDF

Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). CD4 CD25 Tregs, which normally suppress immune responses, exhibit impaired function in MS. Treg-derived extracellular vesicles (EVs) carry immunoregulatory proteins and miRNAs that modulate T-cell activity.

View Article and Find Full Text PDF

Neurodegenerative diseases and spinal cord injuries (SCI) pose a significant burden on the healthcare system globally. Diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease precipitate cognitive, motor, and behavioral deficits. Parallelly, spinal cord injuries produce sensory and motor deficits, which are burdensome psychologically, socially, and economically.

View Article and Find Full Text PDF