Environmental DNA metabarcoding of benthic bacterial communities indicates the benthic footprint of salmon aquaculture.

Mar Pollut Bull

University of Geneva, Department of Genetics and Evolution, 1211 Geneva, Switzerland; ID-Gene ecodiagnostics Ltd. 1228 Plan-les-Ouates, Switzerland.

Published: February 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We evaluated benthic bacterial communities as bioindicators in environmental impact assessments of salmon aquaculture, a rapidly growing sector of seafood industry. Sediment samples (n=72) were collected from below salmon cages towards distant reference sites. Bacterial community profiles inferred from DNA metabarcodes were compared to reference data from standard macrofauna biomonitoring surveys of the same samples. Deltaproteobacteria were predominant in immediate vicinity of the salmon cages. Along the transect, significant shifts in bacterial community structures were observed with Gammaproteobacteria dominating the less-impacted sites. Alpha- and beta-diversity measures of bacterial communities correlated significantly with macrofauna diversity metrics and with five ecological status indices. Benthic bacterial communities mirror the reaction of macrofauna bioindicators to environmental disturbances caused by salmon farming. The implementation of bacterial eDNA metabarcoding in future Strategic Framework Directives is an alternative cost-effective high-throughput biomonitoring solution, providing a basis for management strategies in a matter of days rather than months.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2017.11.065DOI Listing

Publication Analysis

Top Keywords

bacterial communities
16
benthic bacterial
12
salmon aquaculture
8
bioindicators environmental
8
salmon cages
8
bacterial community
8
bacterial
7
salmon
5
environmental dna
4
dna metabarcoding
4

Similar Publications

Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.

Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.

View Article and Find Full Text PDF

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF

Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.

View Article and Find Full Text PDF