98%
921
2 minutes
20
Background: Although epidemiologic studies have shown associations between particle mass and daily mortality, evidence on other particle metrics is weak.
Objectives: We investigated associations of size-specific particle number concentration (PNC) and lung-deposited particle surface area concentration (PSC) with cause-specific daily mortality in contrast to PM.
Methods: We used time-series data (March 2009-December 2014) on daily natural, cardiovascular, and respiratory mortality (NM, CVM, RM) of three adjacent cities in the Ruhr Area, Germany. Size-specific PNC (electric mobility diameter of 13.3-750 nm), PSC, and PM were measured at an urban background monitoring site. In single- and multipollutant Poisson regression models, we estimated percentage change (95% confidence interval) [% (95% CI)] in mortality per interquartile range (IQR) in exposure at single-day (0-7) and aggregated lags (0-1, 2-3, 4-7), accounting for time trend, temperature, humidity, day of week, holidays, period of seasonal population decrease, and influenza.
Results: PNC and PSC were highly correlated and had similar immediate (lag0-1) and delayed (lag4-7) associations with NM and CVM, for example, 1.12% (95% CI: 0.09, 2.33) and 1.56% (95% CI: 0.22, 2.92) higher NM with IQR increases in PNC at lag0-1 and lag4-7, respectfully, which were slightly stronger then associations with IQR increases in PM. Positive associations between PNC and NM were strongest for accumulation mode particles (PNC 100-500 nm), and for larger UFPs (PNC 50-100 nm). Associations between NM and PNC changed little after adjustment for O or PM, but were more sensitive to adjustment for NO.
Conclusion: Size-specific PNC (50-500 nm) and lung-deposited PSC were associated with natural and cardiovascular mortality in the Ruhr Area. Although associations were similar to those estimated for an IQR increase in PM, particle number size distributions can be linked to emission sources, and thus may be more informative for potential public health interventions. Moreover, PSC could be used as an alternative metric that integrates particle size distribution as well as deposition efficiency. https://doi.org/10.1289/EHP2054.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066351 | PMC |
http://dx.doi.org/10.1289/EHP2054 | DOI Listing |
J Control Release
September 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M
Microfluidic hydrodynamic focusing (HF) has emerged as a powerful platform for the controlled synthesis of lipid nanoparticles (LNPs) and liposomes, offering superior precision, reproducibility, and scalability compared to traditional batch methods. However, the impact of HF inlet configuration and channel geometry on nanoparticle formation remains poorly understood. In this study, we present a comprehensive experimental and computational analysis comparing 2-inlet (2-way) and 4-inlet (4-way) HF designs across various sheath inlet angles (45°, 90°, 135°) and cross-sectional geometries (square vs.
View Article and Find Full Text PDFBiomed Mater
September 2025
School of Chemical, Materials and Biological Engineering, The University of Sheffield, Pam Liversidge Building, Mappin Street, Sheffield, S1 3JD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
A key challenge in bone tissue engineering (BTE) is designing structurally supportive scaffolds, mimicking the native bone matrix, yet also highly porous to allow nutrient diffusion, cell infiltration, and proliferation. This study investigated the effect of scaffold interconnectivity on human bone marrow stromal cell (BMSC) behaviour. Highly interconnected, porous scaffolds (polyHIPEs) were fabricated using the emulsion templating method from 2-ethylhexyl acrylate/isobornyl acrylate (IBOA) and stabilised with ~200 nm IBOA particles.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:
Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing, 100101, Peoples Republic of China.
The Dark Energy Spectroscopic Instrument (DESI) is a massively parallel spectroscopic survey on the Mayall telescope at Kitt Peak, which has released measurements of baryon acoustic oscillations determined from over 14 million extragalactic targets. We combine DESI Data Release 2 with CMB datasets to search for evidence of matter conversion to dark energy (DE), focusing on a scenario mediated by stellar collapse to cosmologically coupled black holes (CCBHs). In this physical model, which has the same number of free parameters as ΛCDM, DE production is determined by the cosmic star formation rate density (SFRD), allowing for distinct early- and late-time cosmologies.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
California Institute of Technology, Division of Engineering and Applied Science, Pasadena, California 91125, USA.
Interlocked and polycatenated material systems, consisting of discrete, nonconvex particles linked to their nearest neighbors, such as chainmail fabrics, have been shown to undergo a jamming transition that increases their rigidity under boundary compression. This rigidity transition is associated with an increase in contact number between particles. In architected materials, rigidity is described by theories such as the Maxwell criterion.
View Article and Find Full Text PDF