Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2018.14851DOI Listing

Publication Analysis

Top Keywords

solid state
8
state reaction
8
single-stroke synthesis
4
synthesis tin
4
tin sulphide/oxide
4
sulphide/oxide nanocomposites
4
nanocomposites engineering
4
engineering thermoplastic
4
humidity
4
thermoplastic humidity
4

Similar Publications

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF

The rise in cancer patients could lead to an increase in intensive care units (ICUs) admissions. We explored differences in treatment practices and outcomes of invasive therapies between patients with sepsis with and without cancer. Adults from 2008 to 2019 admitted to the ICU for sepsis were extracted from the databases MIMIC-IV and eICU-CRD.

View Article and Find Full Text PDF

Antibody-based therapies have revolutionized cancer treatment but have several limitations. These include: down-regulation of the target antigen; mutation of the target epitope; or in the case of antibody drug conjugates (ADCs), resistance to the chemotherapy warhead. Since TROP2-targeted therapy with ADCs yields responses in TROP2+ solid tumors but lacks the durability observed with other immunotherapy-based approaches, we developed novel TROP2-targeting chimeric antigen receptor (CAR) T cells as an alternative.

View Article and Find Full Text PDF

The structural role of β-1,6-glucan has remained under-investigated in filamentous fungi compared to other fungal cell wall polymers, and previous studies have shown that the cell wall of the mycelium of did not contain β-1,6-glucans. In contrast, the current solid-state NMR investigations showed that the conidial cell wall contained a low amount of β-1,6-glucan. ssNMR comparisons of the and β-1,6-glucans showed they are structurally similar.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have been emerging as versatile reticular materials due to their tunable structures and functionalities, enabled by precise molecular engineering at the atomic level. While the integration of multiple components into COFs has substantially expanded their structural complexity, the strategic engineering of diverse functionalities within a single framework the random distribution of linkers with varying lengths remains largely unexplored. Here, we report a series of highly crystalline mixed-length multivariate COFs synthesized using azobenzene and bipyridine as linkers, where tuning the ratio of linkers and incorporating palladium effectively modulates the balance between near-infrared (NIR) light absorption and catalytic sites for NIR-generation of hydrogen peroxide (HO).

View Article and Find Full Text PDF