Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Structure-function relationships in tendons are directly influenced by the arrangement of collagen fibres. However, the details of such arrangements in functionally distinct tendons remain obscure. This study demonstrates the use of quantitative polarised light microscopy (qPLM) to identify structural differences in two major tendon compartments at the mesoscale: fascicles and interfascicular matrix (IFM). It contrasts functionally distinct positional and energy storing tendons, and considers changes with age. Of particular note, the technique facilitates the analysis of crimp parameters, in which cutting direction artefact can be accounted for and eliminated, enabling the first detailed analysis of crimp parameters across functionally distinct tendons. IFM shows lower birefringence (0.0013 ± 0.0001 [-]), as compared to fascicles (0.0044 ± 0.0005 [-]), indicating that the volume fraction of fibres must be substantially lower in the IFM. Interestingly, no evidence of distinct fibre directional dispersions between equine energy storing superficial digital flexor tendons (SDFTs) and positional common digital extensor tendons (CDETs) were noted, suggesting either more subtle structural differences between tendon types or changes focused in the non-collagenous components. By contrast, collagen crimp characteristics are strongly tendon type specific, indicating crimp specialisation is crucial in the respective mechanical function. SDFTs showed much finer crimp (21.1 ± 5.5 µm) than positional CDETs (135.4 ± 20.1 µm). Further, tendon crimp was finer in injured tendon, as compared to its healthy equivalents. Crimp angle differed strongly between tendon types as well, with average of 6.5 ± 1.4° in SDFTs and 13.1 ± 2.0° in CDETs, highlighting a substantially tighter crimp in the SDFT, likely contributing to its effective recoil capacity.

Statement Of Significance: This is the first study to quantify birefringence in fascicles and interfascicular matrix of functionally distinct energy storing and positional tendons. It adopts a novel method - quantitative polarised light microscopy (qPLM) to measure collagen crimp angle, avoiding artefacts related to the direction of histological sectioning, and provides the first direct comparison of crimp characteristics of functionally distinct tendons of various ages. A comparison of matched picrosirius red stained and unstained tendons sections identified non-homogenous staining effects, and leads us to recommend that only unstained sections are analysed in the quantitative manner. qPLM is successfully used to assess birefringence in soft tissue sections, offering a promising tool for investigating the structural arrangements of fibres in (soft) tissues and other composite materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894809PMC
http://dx.doi.org/10.1016/j.actbio.2018.01.034DOI Listing

Publication Analysis

Top Keywords

functionally distinct
24
collagen crimp
12
quantitative polarised
12
polarised light
12
light microscopy
12
microscopy qplm
12
distinct tendons
12
energy storing
12
crimp
11
tendons
10

Similar Publications

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

PACAP versus CGRP in migraine: From mouse models to clinical translation.

Cephalalgia

September 2025

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.

Migraine is a complex neurological disorder involving multiple neuropeptides that modulate nociceptive and sensory pathways. The most studied peptide is calcitonin gene-related peptide (CGRP), which is a well-established migraine trigger and therapeutic target. Recently, another peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has emerged as an alternative target for migraine therapeutics.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the evolution of jump and sprint force-production capacities with maturation in young soccer players. One hundred sixteen young elite male soccer players aged 11-17 years were assigned to six different groups according to their maturity status. The force-velocity (F-V) profiles in jumping and sprinting performances were compared among groups.

View Article and Find Full Text PDF

From BN-Dewar benzene to BN-benzvalene: a computational exploration of photoisomerization mechanisms.

Org Biomol Chem

September 2025

Universidad de Córdoba, Grupo de Química Computacional, Facultad de Ciencias Básicas, Carrera 6, No. 77-305, Montería-Córdoba, Colombia.

This study explores the photochemical conversion of BN-Dewar benzene into BN-benzvalene derivatives, offering a strategic route to heteroatom-containing valence isomers with distinctive electronic properties. Using time-dependent density functional theory (TD-DFT) and electron localization function (ELF) analyses, the excited-state mechanism and associated structural rearrangements were elucidated. Vertical excitation to the S state was found to weaken the CC and B-N bonds while strengthening the N-Si bond in silyl-substituted derivatives, a key factor enabling efficient BN-benzvalene formation.

View Article and Find Full Text PDF