98%
921
2 minutes
20
Glutamate dysfunction has been implicated in a number of substance of abuse studies, including cocaine and methamphetamine. Moreover, in attention-deficit/hyperactivity disorder (ADHD), it has been discovered that when the initiation of stimulant treatment occurs during adolescence, there is an increased risk of developing a substance use disorder later in life. The spontaneously hypertensive rat (SHR) serves as a phenotype for ADHD and studies have found increased cocaine self-administration in adult SHRs when treated with the stimulant methylphenidate (MPH) during adolescence. For this reason, we wanted to examine glutamate signaling in the pre-limbic frontal cortex, a region implicated in ADHD and drug addiction, in the SHR and its progenitor control strain, the Wistar Kyoto (WKY). We chronically implanted glutamate-selective microelectrode arrays (MEAs) into 8-week-old animals and treated with MPH (2 mg/kg, s.c.) for 11 days while measuring tonic and phasic extracellular glutamate concentrations. We observed that intermediate treatment with a clinically relevant dose of MPH increased tonic glutamate levels in the SHR but not the WKY compared to vehicle controls. After chronic treatment, both the SHR and WKY exhibited increased tonic glutamate levels; however, only the SHR was found to have decreased amplitudes of phasic glutamate signaling following chronic MPH administration. The findings from this study suggest that the MPH effects on extracellular glutamate levels in the SHR may potentiate the response for drug abuse later in life. Additionally, these data illuminate a pathway for investigating novel therapies for the treatment of ADHD and suggest that possibly targeting the group II metabotropic glutamate receptors may be a useful therapeutic avenue for adolescents diagnosed with ADHD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-018-2483-1 | DOI Listing |
ACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDFFront Microbiol
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Botany, University of Wisconsin-Madison, Madison, WI, United States.
Introduction: The local perception of a stimulus such as wounding can trigger plant-wide responses through the propagation of systemic signals including the vascular transport of diverse chemical messengers, the propagation of electrical changes, and even potentially hydraulic waves that rapidly spread throughout the plant body. These systemic signals trigger changes in second messengers such as Ca2+ that then play roles in triggering subsequent molecular responses. Although the glutamate receptor-like (GLR) channels GLR3.
View Article and Find Full Text PDFJ Fish Biol
September 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
Citrobacter freundii, a common zoonotic pathogen affecting humans, livestock and fish, is recognized for its substantial impact on largemouth bass (Micropterus salmoides) mortality. However, the mechanisms of C. freundii infection in largemouth bass remain poorly understood.
View Article and Find Full Text PDFAnn Anat
September 2025
Department of Biology, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
The Anatolian ground squirrel (Spermophilus xanthoprymnus) offers a valuable model for investigating neuroadaptive processes in the retina during hibernation. This study aimed to assess the expression of vesicular glutamate transporter 1 (VGLUT1), glutamic acid decarboxylase (GAD) isoforms GAD65 and GAD67, and microtubule-associated protein 2 (MAP2) in the retina during pre-hibernation and hibernation states. Retinal tissues were analyzed using immunohistochemistry and densitometric quantification.
View Article and Find Full Text PDF