Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815878PMC
http://dx.doi.org/10.1016/j.molcel.2017.12.030DOI Listing

Publication Analysis

Top Keywords

senataxin mutation
8
r-loops
8
r-loops promote
8
promote transcription
8
dna methylation
8
nucleic acid
8
acid structures
8
mutation reveals
4
reveals r-loops
4
transcription
4

Similar Publications

Nonhomologous end joining (NHEJ) is required for repairing DNA double strand breaks (DSBs) generated by the RAG endonuclease during lymphocyte antigen receptor gene assembly by V(D)J recombination. The ataxia telangiectasia-mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) kinases regulate functionally redundant pathways required for NHEJ. Here, we report that loss of the senataxin helicase leads to a strong defect in RAG DSB repair upon inactivation of DNA-PKcs.

View Article and Find Full Text PDF

Background: Genetic ataxias are clinically heterogenous neurodegenerative conditions often involving rare or private mutations and it is often difficult to assign pathogenicity to rare gene variants solely based on DNA sequencing. An effective functional assay from an easy-to-obtain biospecimen would aid this assessment and be of high clinical value. SETX encodes a ubiquitous DNA/RNA helicase crucial for resolving R-loops and maintaining genome stability.

View Article and Find Full Text PDF

Objective: To investigate the relationship between newly identified senataxin ( gene mutations and the clinical manifestation of Amyotrophic Lateral Sclerosis (ALS), enhancing understanding of the genetic underpinnings associated with this disorder.

Methods: A cohort study was conducted at Nanfang Hospital, involving comprehensive genetic sequencing of ALS patients to identify novel mutations. Homology modelling and structural analysis were employed to predict the functional impacts of these mutations on the senataxin protein.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis 4 (ALS4) is an autosomal dominant motor neuron disease that is molecularly characterized by reduced R-loop levels and caused by pathogenic variants in senataxin (SETX). SETX encodes an RNA/DNA helicase that resolves three-stranded nucleic acid structures called R-loops. Currently, there are no disease-modifying therapies available for ALS4.

View Article and Find Full Text PDF

Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity.

View Article and Find Full Text PDF