Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted sequencing promises to bring next-generation sequencing (NGS) into routine clinical use for infectious disease diagnostics. In this context, upfront processing techniques, including pathogen signature enrichment, must amplify multiple targets of interest for NGS to be relevant when applied to patient samples with limited volumes. Here, we demonstrate an optimized molecular inversion probe (MIP) assay targeting multiple variable regions within the 16S ribosomal gene for the identification of biothreat and ESKAPE pathogens in a process that significantly reduces complexity, labor, and processing time. Probes targeting the Klebsiella pneumoniae carbapenemase (KPC) antibiotic resistance (AR) gene were also included to demonstrate the ability to concurrently identify etiologic agent and ascertain valuable secondary genetic information. Our assay captured gene sequences in 100% of mock clinical samples prepared from flagged positive blood culture bottles. Using a simplified processing and adjudication method for mapped sequencing reads, genus and species level concordance was 100% and 80%, respectively. In addition, sensitivity and specificity for KPC gene detection was 100%. Our MIP assay produced sequenceable amplicons for the identification of etiologic agents and the detection of AR genes directly from blood culture bottles in a simplified single tube assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794912PMC
http://dx.doi.org/10.1038/s41598-018-19501-zDOI Listing

Publication Analysis

Top Keywords

molecular inversion
8
inversion probe
8
next-generation sequencing
8
mip assay
8
blood culture
8
culture bottles
8
bottles simplified
8
assay
5
detection 16s
4
16s rrna
4

Similar Publications

Hetero-Hydrazone Photoswitches.

Angew Chem Int Ed Engl

September 2025

Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.

The fine-tuning of the (photo)physical properties of molecular photoswitches remains an active area of research, and recently, the incorporation of heterocycles into photoswitch scaffolds has emerged as an effective strategy in this vein. To assess the influence that heterocyclic rings have on hydrazone-based systems, we synthesized a series of photoswitches and examined the impact that heterocycles have on the switching efficiency. TD-DFT calculations and structure-property analyses revealed that heterocycles with basic nitrogen and secondary hydrogen-bonding sites (e.

View Article and Find Full Text PDF

Comparative analysis of the mitochondrial genome of whip scorpion, (Butler, 1872) (Arachnida: Thelyphonidae) with phylogenetic implication.

J Genet

September 2025

The Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China.

The complete mitogenome of the common Chinese whip scorpion, (Butler, 1872) was sequenced and compared with another Uropygid mitogenome of (Lucas, 1835). Structural divergences include the absence of one tRNA-Leu and strand inversions in four protein coding genes (PCGs). All PCGs showed K/K ratios-1, which indicates purifying selection, with COI (0.

View Article and Find Full Text PDF

Introduction: Low-level viremia (LLV) in HIV infection, defined as detectable but low plasma viral load, is associated with an increased risk of virological failure (VF); however, the mechanisms underlying LLV remain unclear. Monocytes, as potential viral reservoirs, can migrate into tissues and differentiate into tissue-resident macrophage reservoirs, playing a critical role in viral dissemination and potentially driving persistent viremia.

Methods: This study aimed to analyze and compare the molecular characteristics of near-full-length HIV-1 proviral DNA quasispecies from monocytes in three distinct virological response groups: VF, LLV, and virological suppression (VS).

View Article and Find Full Text PDF

Understanding the relationship between macro- and microevolutionary processes and their delimitation remains a challenge. This review focuses on the role of chromosomal rearrangements in plant population differentiation and lineage diversification resulting in speciation, helping bridge the gap between macro- and microevolution through chromosomal evolution. We focus on angiosperms, a group that comprises the majority of extant plant species diversity and exhibits the largest chromosomal and genomic variations.

View Article and Find Full Text PDF

In the structure of the title compound, CHN·CHNOS·CHNOS, the central pyridinic rings are approximately coplanar to the benzo-thia-zole moieties. The phenyl groups are appreciably angled to the central rings [inter-planar angles of 57.30 (3)° for the anion and 79.

View Article and Find Full Text PDF