Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.

Molecules

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights (s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017417PMC
http://dx.doi.org/10.3390/molecules23020298DOI Listing

Publication Analysis

Top Keywords

block copolymers
24
block
9
one-pot synthesis
8
polymonothiocarbonate block
8
copolymers
6
cta
6
highly efficient
4
efficient one-pot
4
synthesis cos-based
4
cos-based block
4

Similar Publications

Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.

View Article and Find Full Text PDF

Mitochondrial-Targeting Zwitterionic Nanomedicine Based on Tertiary Amine -oxide Polymers for Triple-Negative Breast Cancer Therapy.

Biomacromolecules

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.

View Article and Find Full Text PDF

Adhesives are important in creating multilayer products, such as in packaging and construction. Most current hot-melt adhesives such as poly(ethylene-co-vinyl acetate) (EVA) and polyurethanes lack chemical recyclability and do not easily de-bond, complicating recycling. Here, we achieved tunable adhesive properties of chemically recyclable polyolefin-like multiblock copolymers through regulating the incorporation of crystalline hard blocks, amorphous soft blocks, and ester content highlighted by adhesive strengths up to 6.

View Article and Find Full Text PDF

Rapid Copolymer Analysis of Unresolved Mass Spectra by Artificial Intelligence.

Anal Chem

September 2025

Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.

In this Article, we present a novel data analysis method for the determination of copolymer composition from low-resolution mass spectra, such as those recorded in the linear mode of time-of-flight (TOF) mass analyzers. Our approach significantly extends the accessible molecular weight range, enabling reliable copolymer composition analysis even in the higher mass regions. At low resolution, the overlapping mass peaks in the higher mass range hinder a comprehensive characterization of the copolymers.

View Article and Find Full Text PDF

Disordered Inverse Photonic Beads Assembled From Linear Block Copolymers.

Angew Chem Int Ed Engl

September 2025

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.

Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.

View Article and Find Full Text PDF