Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Volatile anaesthetics can provide significant protection against reperfusion injury in various experimental settings. The aim of this study was to assess the potential of sevoflurane treatment, the most commonly used volatile anaesthetic in modern anaesthesia, in rat lungs donated after circulatory death and reconditioned in an ex vivo lung perfusion (EVLP) system.

Methods: Fifteen rats were sacrificed and divided into 3 groups. In the control and sevoflurane groups, the heart-lung blocks were exposed to 1 h of warm ischaemia and 2 h of cold ischaemia and were mounted on an EVLP circuit for 3 h, in the absence or in the presence of 2% sevoflurane. In the baseline group, heart-lung blocks were harvested immediately after euthanasia. Physiological data, lung nitro-oxidative stress, lactate dehydrogenase (LDH), expression of cytokines, oedema and histopathological findings were assessed during or post-EVLP.

Results: The sevoflurane group showed significantly reduced LDH (8.82 ± 3.58 arbitrary unit vs 3.80 ± 3.02 arbitrary unit, P = 0.03), protein carbonyl (1.17 ± 0.44 nmol⋅mg-1 vs 0.55 ± 0.11 nmol⋅mg-1, P = 0.006), 3-nitrotyrosine (197.44 ± 18.47 pg⋅mg-1 vs 151.05 ± 23.54 pg⋅mg-1, P = 0.004), cytokine-induced neutrophil chemoattractant factor 1 (1.17 ± 0.32 ng⋅mg-1 vs 0.66 ± 0.28 ng⋅mg-1, P = 0.03) and tumour necrosis factor alpha (1.50 ± 0.59 vs 0.59 ± 0.38 ng⋅mg-1, P = 0.02) when compared with the control group. In addition, sevoflurane lungs gained significantly less weight (0.72 ± 0.09 g vs 0.72 ± 0.09 g, P = 0.044), had less perivascular oedema (0.58 ± 0.09 vs 0.47 ± 0.07, P = 0.036), and improved static pulmonary compliance (+0.215 ml⋅cmH2O-1, P = 0.003) and peak airways pressure (-1.33 cmH2O, P = 0.04) but similar oxygenation capacity (+1.61 mmHg, P = 0.77) and pulmonary vascular resistances (+0.078 mmHg⋅min⋅ml-1, P = 0.15) when compared with the control group.

Conclusions: These findings suggest that the potential of sevoflurane in protecting the lungs donated after cardiac death and reconditioned using EVLP could improve the outcome of these lungs following subsequent transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icvts/ivx438DOI Listing

Publication Analysis

Top Keywords

vivo lung
8
lung perfusion
8
potential sevoflurane
8
lungs donated
8
death reconditioned
8
heart-lung blocks
8
arbitrary unit
8
compared control
8
sevoflurane
7
experimental vivo
4

Similar Publications

Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.

View Article and Find Full Text PDF

There are no proven therapies for metastatic or unresectable Chromophobe Renal Cell Carcinoma (ChRCC). ChRCC is characterized by high glutathione levels and hypersensitivity to ferroptosis, an iron-dependent form of cell death characterized by peroxidation of polyunsaturated fatty acids. The underlying mechanisms leading to ferroptosis hypersensitivity are unknown.

View Article and Find Full Text PDF

Silicosis is a fatal occupational lung disease characterized by persistent inflammation and irreversible fibrosis. However, the pathogenesis of silicosis is currently unclear. In this study, a mouse model of silicosis was established by intranasal instillation of silica, and transcriptomic alterations in lung tissues were assessed by mRNA-sequencing.

View Article and Find Full Text PDF

Evodiamine attenuates silica-induced pulmonary fibrosis via PI3K/AKT pathway suppression: Integrated computational and experimental validation.

Biochem Biophys Res Commun

September 2025

Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China. Electronic address:

Background: Silicosis, a devastating occupational lung disease caused by silica dust inhalation, lacks effective treatment options. Evodiamine (Evo), a bioactive alkaloid, has demonstrated anti-fibrotic potential in various diseases; however, its efficacy in silicosis and underlying mechanisms remain elusive. This study aims to systematically investigate Evo's therapeutic effects and mechanisms against silicosis.

View Article and Find Full Text PDF