Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897717PMC
http://dx.doi.org/10.1242/jcs.207340DOI Listing

Publication Analysis

Top Keywords

c-terminal tail
12
gap junction-forming
12
assembly gap
8
gap junctions
8
intracellular sorting
8
regulating endocytosis
8
motif designated
8
designated located
8
rendering motif
8
motif nonfunctional
8

Similar Publications

Deciphering the unique autoregulatory mechanisms and substrate specificity of the understudied DCLK3 kinase linked to neurodegenerative diseases.

J Biol Chem

September 2025

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602; Institute of Bioinformatics, University of Georgia, Athens, GA, 30602. Electronic address:

Protein kinases represent one of the largest and most druggable protein families. Despite considerable progress in their understanding, approximately one-third of human kinases remain poorly characterized, known as the "dark" kinome. Doublecortin-like kinase 3 (DCLK3), a member of this elusive group, has emerged for its involvement in neuroprotection in Huntington's disease and other neurodegenerative disorders.

View Article and Find Full Text PDF

The recent discovery that the model multidrug efflux pump from , EmrE, can perform multiple types of transport suggests that this may be a compelling target for therapeutic intervention. Initial studies have identified several small-molecule substrates capable of inducing transporter-dependent susceptibility rather than the well-known antibiotic resistance phenotype. However, many questions regarding the underlying mechanism and regulation of this transporter still remain.

View Article and Find Full Text PDF

Intrinsic disorder and fuzzy interactions drive multiple functions of HMGB1.

Trends Biochem Sci

September 2025

Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy; School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy. Electronic address:

HMGB1, a multitasking protein, is scrutinized here through the lens of the 'fuzzy interactions' driven by its intrinsically disordered regions (IDRs). Although the multiple intracellular and extracellular functions of this protein have been studied for decades, viewing HMGB1 as fuzzy and dynamic provides a novel perspective. Recent breakthroughs emphasize the crucial role of its IDRs, especially the acidic C-terminal tail, in mediating dynamic multivalent interactions.

View Article and Find Full Text PDF

Light-induced conformational switching and magnetic sensitivity of Drosophila cryptochrome.

Structure

August 2025

Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, UK; Kavli Institute for Nanoscience Discovery, Biochemistry Building, Oxford OX1 3QU, UK. Electronic address:

Cryptochromes are light-sensitive flavoproteins with various biological roles, including a proposed function in magnetoreception. This mechanism rests on a magnetically sensitive photochemical reaction of the flavin chromophore with a chain of tryptophan residues within the protein scaffold. However, the protein-mediated mechanisms of magnetic signal transduction are unclear.

View Article and Find Full Text PDF

The inner nuclear membrane (INM), a subdomain of the endoplasmic reticulum (ER), sequesters hundreds of transmembrane proteins within the nucleus. We previously found that one INM protein, emerin, can evade the INM by secretory transport to the lysosome, where it is degraded (Buchwalter et al., 2019).

View Article and Find Full Text PDF