98%
921
2 minutes
20
The inner nuclear membrane (INM), a subdomain of the endoplasmic reticulum (ER), sequesters hundreds of transmembrane proteins within the nucleus. We previously found that one INM protein, emerin, can evade the INM by secretory transport to the lysosome, where it is degraded (Buchwalter et al., 2019). In this work, we used targeted mutagenesis to identify intrinsic sequences that promote or inhibit emerin's secretory trafficking. By manipulating these sequences across several tag and expression level combinations, we now find that emerin's localization is sensitive to C-terminal GFP tagging. While emerin's long, hydrophobic C-terminal transmembrane domain facilitates trafficking to the lysosome, extending its lumenal terminus with a GFP tag biases the protein toward this pathway. In contrast, we identify a conserved ER retention sequence that stabilizes N- and C-terminally tagged emerin by limiting its lysosomal flux. These findings underscore long-standing concerns about tagging artifacts and reveal novel determinants of tail-anchored INM protein targeting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393879 | PMC |
http://dx.doi.org/10.7554/eLife.105937 | DOI Listing |
Cell Chem Biol
September 2025
iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Institute of Molecular Biology and Bio
Balanced or biased G protein and arrestin transmembrane signaling by the adenosine 2A receptor (AAR) is related to ligand-induced allosterically triggered variation of structural dynamics in the intracellular half of the transmembrane domain (TMD). F-nuclear magnetic resonance (NMR) of a network of genetically introduced meta-trifluoromethyl-L-phenylalanine (mtfF) probes in the core of the TMD revealed signaling-related structure rearrangements leading from the extracellular orthosteric drug-binding site to the G protein and arrestin contacts on the intracellular surface. The key element in this structural basis of signal transfer is dynamic loss of structural order in the intracellular half of the TMD, as manifested by local polymorphisms and associated rate processes within the molecular architecture determined previously by X-ray crystallography.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institut de recherches cliniques de Montréal (IRCM); Programmes de biologie moléculaire, Université de Montréal; Département de Médecine, Université de Montréal;
Embryonic tissue growth and patterning are largely controlled by signals exchanged locally between cell populations within the tissues themselves. Cytonemes are a type of signaling filopodia first identified in Drosophila that connect and mediate exchange between signal-producing and signal-receiving cells. In the developing Drosophila wing imaginal disc, cytonemes are involved in signal exchange between distinct populations of cells within the disc proper (DP) epithelium, which will form the adult wing, as well as between DP cells and cells in adjacent disc-associated tissues.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Science, RMIT University, Melbourne 3000, Australia.
Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.
View Article and Find Full Text PDFLangmuir
September 2025
Microplastics Research Center, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod 173003, Russia.
Microplastics, tiny fragments resulting from the degradation of plastic waste, are abundant in water, air, and soil and are currently recognized as a global environmental problem. There is also growing evidence that nanosized microplastics (nanoplastics) can be hazardous to living species. Unlike most experimental methods, computer modeling is particularly well suited to studying the effects of such nanoplastics.
View Article and Find Full Text PDF