98%
921
2 minutes
20
Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues. We quantified five life-history traits and the magnitude of their plasticity for 23 amphibian species/populations (spanning three families and five genera) when exposed to no cues, crushed-egg cues, and predatory crayfish cues. Embryonic responses varied considerably among species and phylogenetic signal was common among the traits, whereas phylogenetic signal was rare for trait plasticities. Among trait-evolution models, the Ornstein-Uhlenbeck (OU) model provided the best fit or was essentially tied with Brownian motion. Using the best fitting model, evolutionary rates for plasticities were higher than traits for three life-history traits and lower for two. These data suggest that the evolution of life-history traits in amphibian embryos is more constrained by a species' position in the phylogeny than is the evolution of life history plasticities. The fact that an OU model of trait evolution was often a good fit to patterns of trait variation may indicate adaptive optima for traits and their plasticities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131697 | PMC |
http://dx.doi.org/10.1111/evo.13428 | DOI Listing |
J Environ Manage
September 2025
Centre for Applied Water Science, University of Canberra, ACT, Australia; Department of Zoology, University of Otago, Dunedin, New Zealand.
One mechanism for improving the resilience of freshwater systems affected by climate change is to use environmental water to support refugial habitats which allow species, ecosystems and functions to persist and recover after severe droughts. We applied systematic conservation planning (SCP) to prioritise wetlands and lakes with the aim of informing the delivery of environmental water for the creation and protection of refugia habitat in the Murray-Darling Basin, Australia. SCP uses a complimentary algorithm to generate planning solutions that protect all target ecological assets for the lowest "cost" of the management constraints considered.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:
Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.
View Article and Find Full Text PDFZoolog Sci
August 2025
Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
Symbiosis is a key driver of evolution in life-history traits and reproductive strategies. Some symbiotic microorganisms manipulate host reproduction to enhance their own transmission, a phenomenon well studied in insects but less understood in crustaceans. Among these microorganisms, manipulates host reproductive systems, such as parthenogenesis, cytoplasmic incompatibility, and male killing in arthropods.
View Article and Find Full Text PDFEcology
September 2025
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
Pathogens can alter the phenotype not only of exposed hosts, but also of future generations. Transgenerational immune priming, where parental infection drives reduced susceptibility of offspring, has been particularly well explored, but pathogens can also alter life history traits of offspring. Here, we examined the potential for transgenerational impacts of a microsporidian pathogen, Ordospora pajunii, by experimentally measuring the impact of maternal exposure on offspring fitness in the presence and absence of parasites, and then developing mathematical models that explored the population-level impacts of these transgenerational effects.
View Article and Find Full Text PDFEcology
September 2025
Faculty of Biology, University of Warsaw, Warsaw, Poland.
An extended lifespan of Poa annua may be of adaptive value during the invasion of harsh environments. Our aim was to investigate whether this trait is population-specific or general for the species. Individuals representing eight populations were cultivated under experimental conditions for two Antarctic growing seasons separated by polar winter conditions.
View Article and Find Full Text PDF