Publications by authors named "Julia C Buck"

A conflict of interest occurs when parasites manipulate the behavior of their host in contradictory ways to achieve different goals. In grass shrimp (Palaemonetes pugio), trematode parasites that use shrimp as an intermediate host cause the shrimp to be more active than usual around predators, whereas bopyrid isopod parasites that use shrimp as a final host elicit the opposite response. Since these parasites are altering the host's behavior in opposing directions, a conflict of interest would occur in co-infected shrimp.

View Article and Find Full Text PDF

Parasites can alter species interactions either by modifying infected host behaviour or by influencing behavioural responses in uninfected individuals. Salt marsh ecosystems are characterized by a predator-prey interaction between the keystone grazer, Littoraria irrorata, and its main predator, Callinectes sapidus, both integral players in mediating the productivity of these habitats. Littoraria also acts as the first intermediate host for at least four species of digenetic trematode.

View Article and Find Full Text PDF

Background: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone.

Methods: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses progress made by sustainable development practitioners in reducing human infectious diseases while promoting conservation through a systematic literature review of 46 proposed solutions.
  • Some solutions showed medium to high-quality evidence of success, but there were significant evidence gaps indicating a need for further research.
  • Stakeholders are encouraged to use the Review and an online database to discover, customize, or innovate new win-win interventions.
View Article and Find Full Text PDF

Host density shapes infection risk through two opposing phenomena. First, when infective stages are subdivided among multiple hosts, greater host densities decrease infection risk through 'safety in numbers'. Hosts, however, represent resources for parasites, and greater host availability also fuels parasite reproduction.

View Article and Find Full Text PDF

Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts).

View Article and Find Full Text PDF

Dead animal biomass (carrion) is present in all terrestrial ecosystems, and its consumption, decomposition, and dispersal can have measurable effects on vertebrates, invertebrates, microbes, parasites, plants, and soil. But despite the number of studies examining the influence of carrion on food webs, there has been no attempt to identify how general ecological processes around carrion might be used as an ecosystem indicator. We suggest that knowledge of scavenging and decomposition rates, scavenger diversity, abundance, and behavior around carrion, along with assessments of vegetation, soil, microbe, and parasite presence, can be used individually or in combination to understand food web dynamics.

View Article and Find Full Text PDF

The COVID-19 pandemic has altered human behaviour in profound ways, prompting some to question whether the associated economic and social impacts might outweigh disease impacts. This fits into a burgeoning ecological paradigm suggesting that for both predator-prey and parasite-host interactions, non-consumptive effects (avoidance) can be orders of magnitude stronger than consumptive effects (sickness and death). Just as avoidance of predators and parasites imposes substantial costs on prey and hosts, altered behaviour to reduce the transmission of COVID-19 has impacted human fitness and wellbeing.

View Article and Find Full Text PDF

In areas where human schistosomiasis is endemic, infection prevalence and egg output are known to rise rapidly through childhood, reach a peak at 8-15 years of age, and decline thereafter. A similar peak ("overshoot") followed by return to equilibrium infection levels sometimes occurs a year or less after mass drug administration. These patterns are usually assumed to be due to acquired immunity, which is induced by exposure, directed by the host's immune system, and develops slowly over the lifetime of the host.

View Article and Find Full Text PDF
Article Synopsis
  • The World Health Organization found that giving out medicine to stop schistosomiasis (a disease caused by parasites) wasn't working well in some places.
  • They suggest focusing on freshwater snails that spread the disease, especially in the Lower Senegal River Basin where there was a big outbreak.
  • Researchers discovered that instead of counting snails, they could use drone images to quickly assess the areas where snails live, which helps determine how at risk people are for getting infected again.
View Article and Find Full Text PDF

Parasites are increasingly recognized as integral members of ecological communities, but their ecological effects remain less clear. Here, I propose that, to uncover the unique role of parasites, we must understand their indirect effects, which differ in important ways from those caused by predators. Similar to predators, parasites can cause density-mediated indirect effects (DMIEs) through their consumptive effects, and trait-mediated indirect effects (TMIEs) through their nonconsumptive effects; however, because they can consume a host without killing it, parasites can also trigger TMIEs through their consumptive effects.

View Article and Find Full Text PDF

Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues.

View Article and Find Full Text PDF

Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively.

View Article and Find Full Text PDF

Amphibian declines have been linked to numerous factors, including pesticide use and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Moreover, research has suggested a link between amphibian sensitivity to Bd and pesticide exposure. We simultaneously exposed postmetamorphic American toads (Anaxyrus americanus), western toads (A.

View Article and Find Full Text PDF

Anthropogenic stressors may influence hosts and their pathogens directly or may alter host-pathogen dynamics indirectly through interactions with other species. For example, in aquatic ecosystems, eutrophication may be associated with increased or decreased disease risk. Conversely, pathogens can influence community structure and function and are increasingly recognised as important members of the ecological communities in which they exist.

View Article and Find Full Text PDF

Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation.

View Article and Find Full Text PDF

Free-living stages of parasites are consumed by a variety of predators, which might have important consequences for predators, parasites, and hosts. For example, zooplankton prey on the infectious stage of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen responsible for amphibian population declines and extinctions worldwide. Predation on parasites is predicted to influence community structure and function, and affect disease risk, but relatively few studies have explored its consequences empirically.

View Article and Find Full Text PDF

For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection.

View Article and Find Full Text PDF

Population losses and extinctions of species are occurring at unprecedented rates, as exemplified by declines and extinctions of amphibians worldwide. However, studies of amphibian population declines generally do not address the complexity of the phenomenon or its implications for ecological communities, focusing instead on single factors affecting particular amphibian species. We argue that the causes for amphibian population declines are complex; may differ among species, populations, and life stages within a population; and are context dependent with multiple stressors interacting to drive declines.

View Article and Find Full Text PDF

1. With continued globalization, species are being transported and introduced into novel habitats at an accelerating rate. Interactions between invasive species may provide important mechanisms that moderate their impacts on native species.

View Article and Find Full Text PDF

Understanding the impacts of pesticides on non-target organisms is an important issue for conservation biology. Research into the environmental consequences of pesticides has largely focused on pesticide toxicity. We have less understanding of the nonlethal effects of pesticides, and the consequences of nonlethal effects for species and communities.

View Article and Find Full Text PDF