98%
921
2 minutes
20
The correct evaluation of silicon (Si) availability in different soil types is critical in defining the amount of Si to be supplied to crops. This study was carried out to evaluate two methods and five chemical Si extractants in clayey, sandy-loam, and sandy soils cultivated with sugarcane (Saccharum spp. hybrids). Soluble Si was extracted using two extraction methods (conventional and microwave oven) and five Si extractants (CaCl, deionized water, KCl, Na-acetate buffer (pH 4.0), and acetic acid). No single method and/or extractant adequately estimated the Si availability in the soils. Conventional extraction with KCl was no more effective than other methods in evaluating Si availability; however, it had less variation in estimating soluble Si between soils with different textural classes. In the clayey and sandy soils, the Na-acetate buffer (pH 4.0) and acetic acid were effective in evaluating the Si availability in the soil regardless of the extraction methods. The extraction with acetic acid using the microwave oven, however, overestimated the Si availability. In the sandy-loam soil, extraction with deionized water using the microwave oven method was more effective in estimating the Si availability in the soil than the other extraction methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772061 | PMC |
http://dx.doi.org/10.1038/s41598-018-19240-1 | DOI Listing |
J Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
Dissolved oxygen (DO) is a key water quality indicator reflecting river health. Modeling and understanding the spatiotemporal dynamics of DO and its influencing factors are crucial for effective river management. Machine learning (ML) models have gained popularity in water quality prediction; however, their accuracy strongly depends on the predictor variables.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2025
Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2025
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.
View Article and Find Full Text PDFDesert plant communities play an irreplaceable role in maintaining the ecological balance of arid areas. Understanding the spatial distribution pattern of desert plant diversity and its environmental response mechanism is particularly important for the protection of regional biodiversity, and combining phylogenetic information can provide more in-depth insights. To this end, this study conducted a survey of desert plant communities along the southeast to northwest direction of the Hexi Corridor, revealing the variation patterns of species and phylogenetic diversity (PD) indicators along longitude, latitude, and altitude, and explored the driving factors of these patterns in combination with geographical, climatic, and soil factors.
View Article and Find Full Text PDF