98%
921
2 minutes
20
Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial Display (SLAY), a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ∼800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences, dramatically increasing the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved. VIDEO ABSTRACT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786472 | PMC |
http://dx.doi.org/10.1016/j.cell.2017.12.009 | DOI Listing |
Fish Shellfish Immunol
September 2025
Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China. Electronic address:
One of the key innate immune pathways in invertebrates is the immune deficiency (IMD) signaling pathway, which effectively combats Gram-negative bacterial infections. In insects, the IMD pathway is involved in the defense against certain viral infections. However, the functional role of the IMD pathway in antiviral immunity remains incompletely characterized in crustaceans.
View Article and Find Full Text PDFmBio
September 2025
APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, University College, Cork, Ireland.
Bacteriocins are antimicrobial peptides/proteins that can have narrow or broad inhibitory spectra and remarkable potency against clinically relevant pathogens. One such bacteriocin that is extensively used in the food industry and with potential for biotherapeutic application is the post-translationally modified peptide, nisin. Recent studies have shown the impact of nisin on the gastrointestinal microbiome, but relatively little is known of how abundant nisin production is in nature, the breadth of existing variants, and their antimicrobial potency.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States.
The global antibiotic resistance issue constitutes a driving force for developing host defense antimicrobial peptides (AMPs) into a new generation of antibiotics. To facilitate this development, we report the antimicrobial peptide database version 6 (APD6) with (i) the consolidated database platform, (ii) the most comprehensive AMP information pipeline (AMPIP), and (iii) the expanded wheel of function. As of 18 March 2025, the APD6 platform housed records for 5188 peptides, including 3306 natural, 1380 synthetic, and 239 predicted AMPs with systematic classification schemes for each group.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.
Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.
View Article and Find Full Text PDFProc Biol Sci
September 2025
School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
Insects, such as , rely on innate immune defences to combat microbial threats. Antimicrobial peptides (AMPs) play an important role in limiting pathogen entry and colonization. Despite intensive research into the regulation and biochemical properties of antimicrobial peptides, their exact significance has remained uncertain due to the challenges of mutating small genes.
View Article and Find Full Text PDF