Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786504PMC
http://dx.doi.org/10.1016/j.cell.2017.11.047DOI Listing

Publication Analysis

Top Keywords

reversed replication
16
replication forks
16
replication
9
telomere catastrophe
8
replication fork
8
telomerase
6
telomeres
5
stabilization reversed
4
forks
4
forks telomerase
4

Similar Publications

Superinfection exclusion (SIE) is a finely tuned virus-virus interaction mechanism closely linked to the viral infection cycle. However, the mechanistic basis of SIE remains incompletely understood in plant viruses, particularly among negative-sense, single-stranded RNA viruses. In this study, we first describe the development of an efficient reverse genetics system for the plant nucleorhabdovirus Physostegia chlorotic mottle virus (PhCMoV) by codon optimisation of the large polymerase coding sequence.

View Article and Find Full Text PDF

Light-Dependent Regulation of Cyanophage MaMV-DH01 Infection in Microcystis aeruginosa FACHB-524.

Fish Shellfish Immunol

September 2025

Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China. Electronic address:

Cyanophages are widely distributed viruses that specifically infect blue-green algae and play a critical role as biological control agents in aquatic ecosystems. Despite their ecological importance, the effects of light on cyanophage-host interactions are not fully understood. This study aimed to investigate the role of host photosynthesis in different stages of MaMV-DH01 infection, a novel muscle-tailed cyanophage isolated from Donghu Lake that targets Microcystis aeruginosa FACHB524.

View Article and Find Full Text PDF

Pooling samples allows for efficient and cost-effective surveillance of endemic pathogens, enabling broader testing coverage and reducing diagnostic costs. Pooling swine samples for influenza A virus surveillance without negatively impacting sensitivity would depend on the sample type, cycle threshold (Ct value), and dilution level. Therefore, this study aimed to compare the probability of IAV reverse transcription real-time polymerase chain reaction (RT-rtPCR) detection at different pooling levels in family oral fluids, udder wipes, and nasal wipes obtained from an endemic swine breeding herd.

View Article and Find Full Text PDF

Unlabelled: Viruses can rapidly adapt and evolve to new, unfavorable environments due to their decreased replication fidelity, large reproductive index, and short life cycle. Often these adaptations that enable increased fitness in a new, specialized environment comes with a trade-off of decreased fitness in a standard, general environment. Understanding the tradeoffs of generalist and specialist viruses has provided important insight into vaccine development, mechanism of action of antivirals, and function of viral proteins.

View Article and Find Full Text PDF

Recent quest for emulating lifelike smart materials for developing functional outcomes has been spurred by the unparalleled spatiotemporal control of natural systems. However, it is still highly challenging to replicate the progressive time-dependent programmable features of biological systems, such as adaptive broad-spectrum luminescence accompanying functions. Here in, a chemically-fueled transient hydrogel is created based on an aggregation-induced emission-active peptide conjugate (NI-VD).

View Article and Find Full Text PDF