Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glycans are involved in many biological phenomena, including signal transduction, cell adhesion, immune response or differentiation. Although a few papers have reported on the role of glycans in the development and proper functioning of the insect midgut, no data are available regarding the localization of the glycan structures on the surface of the cells in the gut of insects. In this paper, we analyzed the spatial distribution of glycans present on the surface of the midgut cells in larvae of the cotton leafworm , an important agricultural pest insect worldwide. For this purpose, we established primary midgut cell cultures, probed these individual cells that are freely suspended in liquid medium with a selection of seven fluorescently labeled lectins covering a range of different carbohydrate binding specificities [mannose oligomers (GNA and HHA), GalNAc/Gal (RSA and SSA), GlcNAc (WGA and Nictaba) and Neu5Ac(α-2,6)Gal/GalNAc (SNA-I)], and visualized the interaction of these lectins with the different zones of the midgut cells using confocal microscopy. Our analysis focused on the typical differentiated columnar cells with a microvillar brush border at their apical side, which are dominantly present in the Lepidopteran midgut and function in food digestion and absorption, and as well as on the undifferentiated stem cells that are important for midgut development and repair. Confocal microscopy analyses showed that the GalNAc/Gal-binding lectins SSA and RSA and the terminal GlcNAc-recognizing WGA bound preferentially to the apical microvillar zone of the differentiated columnar cells as compared to the basolateral pole. The reverse result was observed for the mannose-binding lectins GNA and HHA, as well as Nictaba that binds preferentially to GlcNAc oligomers. Furthermore, differences in lectin binding to the basal and lateral zones of the cell membranes of the columnar cells were apparent. In the midgut stem cells, GNA and Nictaba bound more strongly to the membrane of these undifferentiated cells compared to the microvillar pole of the columnar cells, while SSA, HHA, WGA, and SNA-I showed stronger binding to the microvilli. Our results indicated that polarization of the midgut cells is also reflected by a specific distribution of glycans, especially between the basal and microvillar pole. The data are discussed in relation to the functioning and development of the insect midgut.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727093PMC
http://dx.doi.org/10.3389/fphys.2017.01020DOI Listing

Publication Analysis

Top Keywords

midgut cells
16
columnar cells
16
cells
13
midgut
10
surface midgut
8
cotton leafworm
8
lectin binding
8
insect midgut
8
distribution glycans
8
gna hha
8

Similar Publications

Distinct cellular and molecular mechanisms contribute to the specificity of the two Drosophila melanogaster chitin synthases in chitin deposition.

PLoS Genet

September 2025

Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Department of Cells and Tissues, Parc Científic de Barcelona, Barcelona, Spain.

Chitin is a major component of arthropod extracellular matrices, including the exoskeleton and the midgut peritrophic matrix. It plays a key role in the development, growth and viability of insects. Beyond the biological importance of this aminopolysaccharide, chitin also receives considerable attention for its practical applications in medicine and biotechnology, as it is a superior biopolymer with excellent physicochemical and mechanical properties.

View Article and Find Full Text PDF

ATP synthase subunit γ mediates Cry1Ac binding and toxicity in Grapholita molesta.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100

The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.

View Article and Find Full Text PDF

Disruption of egg and nymph development via RNAi-mediated Glutamine: fructose-6-phosphate aminotransferase knockdown in Locusta migratoria: A promising strategy for pest management.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China.

Glutamine: fructose-6-phosphate aminotransferase (GFAT) is the first rate-limiting enzyme in the hexosamine biosynthetic pathway, which plays a crucial role in various biological processes, including chitin metabolism in insects. Locusta migratoria, a widespread and highly destructive agricultural pest, poses a significant threat due to its rapid reproduction and long-distance migration. In this study, we identified and characterized LmGFAT as a key regulator of locust development.

View Article and Find Full Text PDF

Morphology of the larval midgut of the longhorn beetle Rhytidodera bowringii White, 1853 (Coleoptera: Cerambycidae: Cerambycinae).

Protoplasma

September 2025

Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.

The midgut of insects originates from the endoderm. It is located in the central part of the digestive tract and serves as the primary site for chemical digestion and nutrient absorption. The larvae of Cerambycidae are the most destructive life stage.

View Article and Find Full Text PDF

CO and NO Coordinate Developmental Neuron Migration.

Int J Mol Sci

August 2025

Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30125 Hannover, Germany.

Similarly to the short-lived messenger nitric oxide (NO), the more stable carbon monoxide (CO) molecule can also activate soluble guanylyl cyclase (sGC) to increase cGMP levels. However, CO-induced cGMP production is much less efficient. Using an accessible invertebrate model, we dissect a potential interaction between the canonical NO/sGC/cGMP and CO signalling pathways during development.

View Article and Find Full Text PDF