98%
921
2 minutes
20
Plexitonic nanoparticles offer variable optical properties through tunable excitations, in addition to electric field enhancements that far exceed molecular resonators. This study demonstrates a way to design an ultrabright surface-enhanced Raman spectroscopy (SERS) signal while simultaneously quenching the fluorescence background through silica encapsulation of the semiconductor-metal composite nanoparticles. Using a multistep approach, a J-aggregate-forming organic dye is assembled on the surface of gold nanoparticles using a cationic linker. Excitonic resonance of the J-aggregate-metal system shows an enhanced SERS signal at an appropriate excitation wavelength. Further encapsulation of the decorated particles in silica shows a significant reduction in the fluorescence signal of the Raman spectra (5× reduction) and an increase in Raman scattering (7× enhancement) when compared to phospholipid encapsulation. This reduction in fluorescence is important for maximizing the useful SERS enhancement from the particle, which shows a signal increase on the order of 10 times greater than J-aggregated dye in solution and 24 times greater than Oxonica S421 SERS tag. The silica layer also serves to promote colloidal stability. The combination of reduced fluorescence background, enhanced SERS intensity, and temporal stability makes these particles highly distinguishable with potential to enable high-throughput applications such as SERS flow cytometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201705381 | DOI Listing |
Anal Sci
September 2025
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.
View Article and Find Full Text PDFAdv Mater
September 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat de València-Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.
Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Teaching & Research Department of Common Course, Shenyang Sport University, Shenyang, 110115, China.
A surface enhanced Raman scattering (SERS)-based sensing platform is devised integrating a TMB redox system for rapid dopamine detection. Gold nanobipyramids (Au NBPs), synthesized via the heat-mediated seed-mediated growth method, possess dual functionality of peroxidase-like activity and SERS activity. This enables them to catalyze the oxidation of TMB and simultaneously amplify the Raman signal of the oxidized TMB product (oxTMB).
View Article and Find Full Text PDFTalanta
September 2025
Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:
Food spoilage poses a global challenge with far-reaching consequences for public health, economic stability, and environmental sustainability. Conventional analytical methods for spoilage detection though accurate are often cost-prohibitive, labor-intensive, and unsuitable for real-time or field-based monitoring. Microfluidic paper-based analytical devices (μPADs) have emerged as a transformative technology offering rapid, portable, and cost-effective solutions for food quality assessment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.
View Article and Find Full Text PDF