Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Congenital diaphragmatic hernia (CDH) is commonly associated with pulmonary hypoplasia and pulmonary hypertension (PH). PH associated with CDH (CDH-PH) is frequently resistant to conventional pulmonary vasodilator therapy including inhaled nitric oxide (iNO) possibly due to right and left ventricular dysfunction. Milrinone is an intravenous inotrope and lusitrope with pulmonary vasodilator properties and has been shown anecdotally to improve oxygenation in PH. We developed this pilot study to determine if milrinone infusion would improve oxygenation in neonates ≥36 weeks postmenstrual age (PMA) with CDH.

Methods/design: Data on pulmonary vasodilator management and outcome of CDH patients was collected from 18 university NICUs affiliated with the Neonatal Research Network (NRN) from 2011 to 2012. The proposed pilot will be a masked, placebo-controlled, multicenter, randomized trial of 66 infants with CDH with an oxygenation index (OI) ≥10 or oxygen saturation index (OSI) ≥5. The primary outcome is the oxygenation response, as determined by change in OI at 24 h after initiation of study drug. As secondary outcomes, we will determine oxygenation at 48 h and 72 h post-infusion, right ventricular pressures on echocardiogram and the incidence of systemic hypotension, arrhythmias, intracranial hemorrhage, survival without extracorporeal membrane oxygenation, and chronic lung disease (oxygen need at 28 days postnatal age). Finally, we will evaluate the pulmonary and nutritional status at 4, 8 and 12 months of age using a phone questionnaire.

Results: Three hundred thirty-seven infants with CDH were admitted to NRN NICUs in 2011 and 2012 of which 275 were ≥36 weeks PMA and were exposed to the following pulmonary vasodilators: iNO (39%), sildenafil (17%), milrinone (17%), inhaled epoprostenol (6%), intravenous epoprostenol (3%), and intravenous PGE1 (1%). ECMO was required in 36% of patients. Survival to discharge was 71%.

Discussion: CDH is an orphan disease with high mortality with few randomized trials evaluating postnatal management. Intravenous milrinone is a commonly used medication in neonatal/pediatric intensive care units and is currently used in 17% of patients with CDH within the NRN. This pilot study will provide data and enable further studies evaluating pulmonary vasodilator therapy in CDH.

Trial Registration: ClinicalTrials.gov; NCT02951130; registered 14 October 2016.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704584PMC
http://dx.doi.org/10.1186/s40748-017-0066-9DOI Listing

Publication Analysis

Top Keywords

pulmonary vasodilator
16
congenital diaphragmatic
8
diaphragmatic hernia
8
pulmonary
8
vasodilator therapy
8
improve oxygenation
8
pilot study
8
2011 2012
8
infants cdh
8
epoprostenol intravenous
8

Similar Publications

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

We previously demonstrated the CFTR correctors VX-445 (elexacaftor) and S-VX-121 (vanzacaftor) potentiate heterologously-expressed BK channels, as well as in primary human bronchial epithelial cells (HBEs). This potentiation of BK resulted in altered vasoreactivity and neuronal excitability. We postulated novel compounds could be identified that would potentiate BK while not affecting CFTR.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

m6A-Mediated Methylation Patterns and Their Association With Obstructive Sleep Apnea in Lung Adenocarcinoma.

Cancer Rep (Hoboken)

September 2025

Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou, Jiangsu, China.

Background: Epigenetic regulation significantly affects immune responses in lung adenocarcinoma (LUAD). However, the role of RNA N6-methyladenosine (m6A) modification, especially in obstructive sleep apnea-hypopnea syndrome (OSAHS) within LUAD, is not well understood.

Methods: This study examined m6A modification patterns in 973 LUAD patients using 23 regulatory genes.

View Article and Find Full Text PDF

Role of hydrogen sulfide in catalyzing the formation of NO-ferroheme.

Nitric Oxide

September 2025

Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC, 27109, USA. Electronic address:

We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.

View Article and Find Full Text PDF