Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanometre-scale magnetic field distributions in materials such as those at oxide interfaces, in thin layers of spintronics devices, and at boundaries in magnets have become important research targets in materials science and applied physics. Electron holography has advantages in nanometric magnetic field observations, and the realization of aberration correctors has improved its spatial resolution. Here we show the subnanometre magnetic field observations inside a sample at 0.67-nm resolution achieved by an aberration-corrected 1.2-MV holography electron microscope with a pulse magnetization system. A magnetization reduction due to intermixing in a CoFeB/Ta multilayer is analyzed by observing magnetic field and electrostatic potential distributions simultaneously. Our results demonstrate that high-voltage electron holography can be widely applied to pin-point magnetization analysis with structural and composition information in physics, chemistry, and materials science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717169PMC
http://dx.doi.org/10.1038/s41598-017-16519-7DOI Listing

Publication Analysis

Top Keywords

magnetic field
20
field observations
12
electron holography
12
067-nm resolution
8
materials science
8
magnetic
5
observations cofeb/ta
4
cofeb/ta layers
4
layers 067-nm
4
electron
4

Similar Publications

Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.

View Article and Find Full Text PDF

Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.

Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.

View Article and Find Full Text PDF

Construction and verification of soil heavy metal establishment identification method based on dual-threshold of magnetic susceptibility.

J Hazard Mater

September 2025

Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, College of Forestry & College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.

Pollutants from industrial emissions and traffic accumulate in urban soils as road dust, carrying heavy metals (HMs) posing ecological and health risks. Magnetic susceptibility (MS), sensitive to ferromagnetic minerals, enables rapid HM contamination assessment. This study developed the Modified Dual-Threshold MS Evaluation Plot for Soil Contamination (M-Plot) using χ and χ% indices.

View Article and Find Full Text PDF

PdMoW trimetallene facilitates the electrooxidation of ethanol in alkaline electrolyte with high efficiency and C2 selectivity.

J Colloid Interface Sci

September 2025

Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:

Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.

View Article and Find Full Text PDF

The objective of this study was to investigate the enhancement mechanism of low-frequency magnetic field (LF-MF) on the gelation and structures of potato protein-linseed oil emulsion gel. Results indicated that the gel strength and water holding capacity of the gel induced by 6 mT LF-MF intensity were significantly increased from 0.33 N‧mm and 42.

View Article and Find Full Text PDF