Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane. Our results, which are robust to varying parameters, cluster size, and boundary conditions, support the interpretation of experimental observations such as the hourglass magnetic dispersion and the Yamada plot of incommensurability versus doping in terms of the physics of fluctuating stripes. These findings provide a different perspective on the intertwined orders emerging from the cuprates' normal state.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aak9546DOI Listing

Publication Analysis

Top Keywords

fluctuating stripes
8
normal state
8
cuprate superconductors
8
numerical evidence
4
evidence fluctuating
4
stripes
4
stripes normal
4
state high-
4
high- cuprate
4
superconductors doping
4

Similar Publications

We numerically examine the dynamics of a probe particle driven at a constant force through an assembly of particles with competing long-range repulsion and short-range attraction that forms a bubble or stripe state. In the bubble regime, we identify several distinct types of motion, including an elastic or pinned regime where the probe particle remains inside a bubble and drags all other bubbles with it. There is also a plastic bubble phase where the bubble in which the probe particle is trapped is able to move past the adjacent bubbles.

View Article and Find Full Text PDF

The human finger, with its high concentration of sensory receptors, excels at sensing both surface patterns and subsurface properties within soft tissue. However, replicating this dual capability in artificial systems poses significant challenges. This study presents a smart finger system based on a high-density piezoresistive sensor array, which demonstrates high sensitivity, fast response, and the ability to recognize both surface and subsurface patterns.

View Article and Find Full Text PDF

Fringe projection profilometry (FPP) using gray-scale patterns like sinusoidal stripes often encounters challenges for high dynamic range (HDR) applications. These challenges arise due to the presence of shiny surfaces or abrupt changes in reflectivity, leading to either reconstruction failure or substantial errors. We present a robust modulation and reconstruction method that divides the grayscale sinusoidal fringe into eight binary fringes and employs a differencing approach to mitigate HDR surface interference and enable demodulation, significantly reducing vulnerability to reflectivity fluctuations.

View Article and Find Full Text PDF

The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.

View Article and Find Full Text PDF

Spatiotemporal pattern formation of membranes induced by surface molecular binding/unbinding.

Soft Matter

February 2025

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.

Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.

View Article and Find Full Text PDF