Driven probe particle dynamics in a bubble and pattern forming system.

J Chem Phys

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We numerically examine the dynamics of a probe particle driven at a constant force through an assembly of particles with competing long-range repulsion and short-range attraction that forms a bubble or stripe state. In the bubble regime, we identify several distinct types of motion, including an elastic or pinned regime where the probe particle remains inside a bubble and drags all other bubbles with it. There is also a plastic bubble phase where the bubble in which the probe particle is trapped is able to move past the adjacent bubbles. At larger drives, there is a breakthrough regime where the probe particle jumps from bubble to bubble and, in some cases, can induce correlated rotations or plastic rearrangements of the particles within the bubbles. At the highest drives, the probe particle moves sufficiently rapidly that the background particles undergo only small distortions. The distinctive dynamic flow states and the transitions between them are accompanied by signatures in the effective drag on the driven particle, jumps in the velocity-force curves, and changes in the time-dependent velocity fluctuations. We map the dynamic phase diagram for this system for varied interaction lengths, bubble sizes, and densities.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0284824DOI Listing

Publication Analysis

Top Keywords

probe particle
24
bubble
9
regime probe
8
particle jumps
8
particle
7
probe
5
driven probe
4
particle dynamics
4
dynamics bubble
4
bubble pattern
4

Similar Publications

Multimessenger Detection of Black Hole Binaries in Dark Matter Spikes.

Phys Rev Lett

August 2025

The Johns Hopkins University, William H. Miller III Department of Physics and Astronomy, Baltimore, Maryland 21218, USA.

We investigate the inspiral of a high mass-ratio black hole binary located in the nucleus of a galaxy, where the primary central black hole is surrounded by a dense dark matter spike formed through accretion during the black hole growth phase. Within this spike, dark matter undergoes strong self-annihilation, producing a compact source of γ-ray radiation that is highly sensitive to spike density, while the binary emits gravitational waves at frequencies detectable by LISA. As the inspiraling binary interacts with the surrounding dark matter particles, it alters the density of the spike, thereby influencing the γ-ray flux from dark matter annihilation.

View Article and Find Full Text PDF

Feebly interacting particles, such as sterile neutrinos, dark photons, and axions, can be abundantly produced in the proto-neutron star (PNS) formed in core-collapse supernovae (CCSNe). These particles can decay into photons or charged leptons, depositing energy outside the PNS. Strong bounds on new particles can thus be derived from the observed luminosity of CCSNe, with even tighter bounds obtained from low-energy SNe observations.

View Article and Find Full Text PDF

We present the first constraints on primordial magnetic fields from the Lyman-α forest using full cosmological hydrodynamic simulations. At the scales and redshifts probed by the data, the flux power spectrum is extremely sensitive to the extra power induced by primordial magnetic fields in the linear matter power spectrum, at a scale that we parametrize with k_{peak}. We rely on a set of more than a quarter million flux models obtained by varying thermal and reionization histories and cosmological parameters.

View Article and Find Full Text PDF

Probing Benchmark Models of Hidden-Sector Dark Matter with DAMIC-M.

Phys Rev Lett

August 2025

Sorbonne Université, Laboratoire de physique nucléaire et des hautes énergies (LPNHE), Université Paris Cité, CNRS/IN2P3, Paris, France.

We report on a search for sub-GeV dark matter (DM) particles interacting with electrons using the DAMIC-M prototype detector at the Modane Underground Laboratory. The data feature a significantly lower detector single e^{-} rate (factor 50) compared to our previous search, while also accumulating a 10 times larger exposure of ∼1.3  kg-day.

View Article and Find Full Text PDF

Mumps virus infection triggers early pro-inflammatory responses and impairs Leydig and Sertoli cell function in an ex vivo human testis model.

Hum Reprod

September 2025

Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes-UMR_S1085, Rennes, France.

Study Question: What is the direct effect of mumps virus (MuV) replication within the human testis on the tissue innate immune responses and testicular cell functions?

Summary Answer: MuV induces an early pro-inflammatory response in the human testis ex vivo and infects both Leydig cells and Sertoli cells, which drastically alters testosterone and inhibin B production.

What Is Known Already: Despite widespread vaccination efforts, orchitis remains a significant complication of MuV infection, especially in young men, which potentially results in infertility in up to 87% of patients with bilateral orchitis. Our understanding of MuV pathogenesis in the human testis has been limited by the lack of relevant animal models, impairing the development of effective treatments.

View Article and Find Full Text PDF