Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ryanodine receptor type 2 (RyR-2), the main Ca release channel from sarcoplasmic reticulum in cardiomyocytes, plays a vital role in the regulation ofmyocardial contractile function and cardiac hypertrophy. However, the role of RyR-2 in cardiac fibrosis during the development of cardiac hypertrophy remains unclear.In this study, we examined whether RyR-2 regulates TGFβ1, which is secreted from cardiomyocytes and exerts on cardiac fibrosis using cultured cardiomyocytes and cardiac fibroblasts of neonatal rats. The expression of RyR-2 was found only in cardiomyocytesbut not in cardiac fibroblasts. Mechanical stretch induced upregulation of TGFβ1 in cardiomyocytes and RyR-2 knockdown significantly suppressed the upregulation of TGFβ1 expression. The transcript levels of collagen genes were also decreased in fibroblasts compare with wild type, although the expression of both two kinds was higher than those in stationary cardiomyocytes (non-stretch). With the inhibition of the TGFβ1-neutralizing antibody, the expression of collagen genes has no significant difference between the mechanically stretched cardiomyocytes and non-stretchedones. These results indicate that RyR-2 regulated TGFβ1 expression in mechanically stretched cardiomyocytes and TGFβ1 promoted collagen formation of cardiac fibroblasts by a paracrine mechanism.RyR-2 in mechanical stretch could promote the development of cardiac fibrosis involving TGFβ1-dependent paracrine mechanism. Our findings provided more insight into comprehensively understanding the molecular role of RyR-2 in regulating cardiac fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1536/ihj.16-572DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
20
development cardiac
12
mechanical stretch
12
cardiac fibroblasts
12
cardiac
10
ryanodine receptor
8
receptor type
8
cardiac hypertrophy
8
role ryr-2
8
upregulation tgfβ1
8

Similar Publications

Astragaloside IV Binds with RhoA, Inhibits EndMT and Ameliorates Myocardial Fibrosis in Mice.

Am J Chin Med

September 2025

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Astragaloside IV (ASIV), the main active component of the traditional Chinese medicine HuangQi, exhibits ameliorating effects on myocardial fibrosis through unclear mechanisms. To investigate the effects of ASIV on Endothelial-to-mesenchymal transition (EndMT) in myocardial fibrosis, 10 ng/mL TGF-β1 was used to induce EndMT in human umbilical vein endothelial cells (HUVECs) and a 5 mg/kg/d subcutaneous injection of Isoproterenol (ISO) was used to induce myocardial fibrosis in mice . The drug affinity-responsive target stability (DARTS) was used to identify the target proteins of ASIV in endothelial cells.

View Article and Find Full Text PDF

The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.

View Article and Find Full Text PDF

Chrysin Attenuates Myocardial Cell Apoptosis in Mice.

Cardiovasc Toxicol

September 2025

Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, 510100, Guangdong, China.

Myocardial infarction (MI), induced by ischemia and hypoxia of the coronary arteries, presents as myocardial necrosis. Patients often experience intense, prolonged retrosternal pain that is unrelieved by rest or nitrate therapy and is frequently associated with high blood myocardial enzyme levels. Physical effort may exacerbate this anxiety, increasing the likelihood of life-threatening consequences such as arrhythmias, shock, or cardiac failure.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) is a genetic disorder that remains underrecognized across Africa, where limited diagnostic capacity, low awareness, and competing health priorities contribute to delayed or missed diagnoses [1-4]. Although increasing data suggests CF is more prevalent than previously believed in Africa, survival remains poor [1]. These challenges do not only affect people with CF (pwCF) in Africa but also have implications for global understanding of the disease, particularly among populations historically excluded from CF research and treatment advances.

View Article and Find Full Text PDF

Cardiac fibrosis, especially in the infarct border zone, leads to decreased cardiac compliance, impaired systolic and diastolic function, resulting in heart failure. M6A methylation plays a role in fibrosis development. However, its underlying mechanism remains poorly understood.

View Article and Find Full Text PDF