98%
921
2 minutes
20
Objective: Predator stress, social defeat stress, and fear conditioning animal models have been applied to investigate combat-related posttraumatic stress disorder (PTSD). However, no animal model psychopharmacological studies have investigated prevention of somatization of increased mental stress and fatigue at the beginning of combat exposure. This study utilized a novel animal model simulating the beginning of combat exposure that aided specification of a set of biomarkers.
Methods: Psychological stress was induced by both inescapable electric foot shock and noise stimuli. Physical fatigue was induced by sleep deprivation and forced exercise in a rotating cage. A new device reflecting simultaneous psychological stress and physical fatigue was constructed. The protocol simulating combat exposure was set as 3 rounds of 24-h exposure in a 2-week period, which was specified as intermittent unpredictable stress (IUS).
Results: Mice exposed to IUS (IUS mice) had significantly higher serum corticosterone levels (p < 0.05), excessive locomotive activity (p < 0.001), and anxiety-like behavior (p < 0.02) compared to control mice. IUS mice also had significantly higher IFN-γ (p < 0.001) and TNF-α (p < 0.05) levels in the supernatant of splenic T-cell culture compared to control mice. Brain-derived neurotropic factor levels were significantly decreased (p < 0.04) after IUS exposure.
Conclusion: The proposed animal model of combat exposure reflected cognitive function impairment, behavior disturbance, and altered neuroimmune interactions without any apparent histopathological changes, and this animal model may be more applicable to protective research on war syndrome than combat-related PTSD after war because the hypothalamic-pituitary-adrenal axis has not been blunted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000481914 | DOI Listing |
Anim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
University Center for Research & Development (UCRD), Chandigarh University, NH-05 Chandigarh-Ludhiana Highway, Mohali 140413, Punjab, India.
Cardiovascular disorders remain a leading cause of death worldwide, and the use of contemporary stents is paving the way for a profound shift in the field of cardiology. In the surgical process postimplantation, the graft or stent and host-immune interaction play a significant role in the healing process, thus it is a major challenge in healthcare. To address these challenges, recent advancements have introduced bioactive coatings with specialized modifications in stents to enhance their interaction with surrounding environment.
View Article and Find Full Text PDFElife
September 2025
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.
View Article and Find Full Text PDFSci Prog
September 2025
Department of Neurology, University of Afyonkarahisar Health Sciences, Afyonkarahisar, Türkiye.
A considerable number of individuals are diagnosed with idiopathic trigeminal neuralgia. In order to achieve a more complete understanding of the pathophysiology, it is essential to adopt a range of novel approaches and utilize new animal models. This study investigated changes in the messenger RNA (mRNA) expression of ion-channels in a newly developed animal model of trigeminal neuropathic pain induced by cervical spinal dorsal horn compression.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.
Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.
View Article and Find Full Text PDF