TGF-β1/Smad3 Signaling Pathway Mediates T-2 Toxin-Induced Decrease of Type II Collagen in Cultured Rat Chondrocytes.

Toxins (Basel)

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

T-2 toxin can cause damage to the articular cartilage, but the molecular mechanism remains unclear. By employing the culture of rat chondrocytes, we investigated the effect of the TGF-β1/Smad3 signaling pathway on the damage to chondrocytes induced by T-2 toxin. It was found that T-2 toxin could reduce cell viability and increased the number of apoptotic cells when compared with the control group. After the addition of the T-2 toxin, the production of type II collagen was reduced at mRNA and protein levels, while the levels of TGF-β1, Smad3, ALK5, and MMP13 were upregulated. The production of the P-Smad3 protein was also increased. Inhibitors of TGF-β1 and Smad3 were able to reverse the effect of the T-2 toxin on the protein level of above-mentioned signaling molecules. The T-2 toxin could promote the level of MMP13 via the stimulation of TGF-β1 signaling in chondrocytes, resulting in the downregulation of type II collagen and chondrocyte damage. Smad3 may be involved in the degradation of type II collagen, but the Smad3 has no connection with the regulation of MMP13 level. This study provides a new clue to elucidate the mechanism of T-2 toxin-induced chondrocyte damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705974PMC
http://dx.doi.org/10.3390/toxins9110359DOI Listing

Publication Analysis

Top Keywords

t-2 toxin
24
type collagen
16
tgf-β1/smad3 signaling
8
signaling pathway
8
t-2
8
t-2 toxin-induced
8
rat chondrocytes
8
tgf-β1 smad3
8
chondrocyte damage
8
toxin
6

Similar Publications

T-2 Toxin Exploits Gut-Derived Staphylococcus Saprophyticus to Disrupt Hepatic Macrophage Homeostasis.

Adv Sci (Weinh)

September 2025

Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.

T-2 toxin, a mycotoxin that frequently causes hidden contamination in food and animal feed, poses a substantial threat to both human and animal health. Staphylococcus saprophyticus (S. saprophyticus) is an opportunistic pathogen that widely infects humans and various animals.

View Article and Find Full Text PDF

T-2 Toxin-Induced Hepatotoxicity in HepG2 Cells Involves the Inflammatory and Nrf2/HO-1 Pathways.

Toxins (Basel)

August 2025

Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), University of Valencia, 46100 Valencia, Spain.

The T-2 toxin is one of the most toxic mycotoxins, to which the population is exposed through the diet. T-2 toxins are especially found in cereals and cereal-based products. To deepen our understanding of the mechanisms of T-2 toxin action, the morphological changes, oxidative stress, and inflammatory response of this mycotoxin have been evaluated in HepG2 cells.

View Article and Find Full Text PDF

T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs.

View Article and Find Full Text PDF

Chondroitin sulfate A-selenium nanoparticles protect chondrocytes from T-2 toxin-induced oxidative stress and mitochondrial dysfunction through activating autophagy by the SIRT1-AMPK-FOXO3 pathway.

Ecotoxicol Environ Saf

August 2025

Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention

T-2 toxin is known to cause tissue and cellular damage, with chondrocytes being particularly vulnerable. In contrast, chondroitin sulfate A-selenium nanoparticles (CSA-SeNP) have shown cartilage-protective properties, although the precise molecular mechanism remains incompletely elucidated. This study used T-2 toxin and CSA-SeNP to treat human C28/I2 chondrocytes, and studied their effects on SIRT1-AMPK-FOXO3 pathway and oxidative damage, mitochondrial dysfunction, impaired autophagy, and apoptosis.

View Article and Find Full Text PDF

T-2 toxin (T-2), a foodborne mycotoxin, causes gut and liver injury in organisms. However, its effects on intestine in ducks and the mediating role of gut microbiota in pathogenesis remain unclear. This study investigated the involvement of gut microbiota in T-2-induced enterotoxicity and hepatotoxicity in ducks.

View Article and Find Full Text PDF