98%
921
2 minutes
20
Circadian rhythms influence virtually all life forms on our planet, a notion that opens the question on how the circadian cycles of individual organisms may interplay with each other. In mammals, a potentially dangerous environmental stress is represented by encounters with infectious agents. Microbial attack is a major risk for organismal homeostasis and therefore needs to be efficiently counteracted by mechanisms implemented by the host immune system. Accumulating evidence shows that the immune system may anticipate an emerging pathogenic exposure through an enhanced inflammatory state. Notably, the circadian clock orchestrates these anticipatory responses to fluctuating conditions in the external world. In this article, we review the current knowledge about the relationship between the circadian clock and pathogenic infections. We discuss the role of the circadian clock against infection and specific pathogens, the core clock proteins involved in the defense mechanisms, and the specific tissue or cell type in which they function to counteract the infection. Finally, circadian oscillations in the gut microbiome composition and its possible role in protecting against foodborne pathogen colonization are presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120698 | PMC |
http://dx.doi.org/10.1101/cshperspect.a028365 | DOI Listing |
Mar Life Sci Technol
August 2025
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.
Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.
View Article and Find Full Text PDFR Soc Open Sci
September 2025
Department of Genetics and Development, University of Geneva, Geneva, Switzerland.
has been a pioneering model system for investigations into the genetic bases of behaviour. Studies of circadian activity were some of the first behaviours investigated in flies. The Activity Monitoring (DAM) system by TriKinetics played a key role in establishing the fundamental feedback loop of the circadian clock.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.
The circadian clock in the suprachiasmatic nucleus and peripheral tissues functions to regulate key physiological and cellular systems in a cycle approximating 24 h. Understanding the ontogeny of the circadian clock mechanism during mammalian development is incomplete. Accordingly, we used the mouse as a model and a previously published RNAseq dataset to determine when expression of core genes regulating the circadian clock increase in transcript abundance in fetal and postnatal brain, heart, liver, and kidney.
View Article and Find Full Text PDFNPJ Biol Timing Sleep
September 2025
Healthy Living Spaces Lab, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
The retinal photopigment melanopsin is also expressed in subcutaneous white adipose tissue (scWAT). Through melanopsin, light can modulate scWAT metabolism, but its impact on circadian phase is unclear. In vitro exposure of murine scWAT to bright light at different times over 24 h did not elicit phase shifts, unlike the response to corticosterone.
View Article and Find Full Text PDFFASEB J
September 2025
Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.
The molecular clock exhibits distinct characteristics across various tissues and can be synchronized by particular stimuli. Furthermore, there is an intricate interplay among the molecular clocks within different tissues. In this context, we present an overview of the tissue-specific molecular clock and discuss pivotal nonphotic regulators that govern the host's circadian rhythms and metabolic processes.
View Article and Find Full Text PDF