98%
921
2 minutes
20
Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.14290 | DOI Listing |
PLoS Genet
September 2025
MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
Cytoplasmic Incompatibility (CI) causes embryonic lethality in arthropods, resulting in a significant reduction in reproductive success. In most cases, this reproductive failure is driven by Wolbachia endosymbionts through their cifA/cifB gene pair, whose products disrupts arthropod DNA replication during embryogenesis. While a cif pair has been considered a hallmark of Wolbachia, its presence and functional significance in other bacterial lineages remains poorly investigated.
View Article and Find Full Text PDFArch Microbiol
September 2025
División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.
Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.
View Article and Find Full Text PDFHum Genet
September 2025
College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.
Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.
View Article and Find Full Text PDFNeurol Res
September 2025
Henan Provincial People's Hospital, Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Zhengzhou, China.
Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.
Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.
Microbiol Spectr
September 2025
Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the Gammaherpesvirinae subfamily. During the lytic phase of herpesviruses, viral capsids form in the host cell nucleus, and the replicated viral genome is packaged into these capsids. The herpesviral genome is replicated as a precursor head-to-tail concatemer consisting of tandemly repeated genomic units, each flanked by terminal repeats (TRs).
View Article and Find Full Text PDF