98%
921
2 minutes
20
Background: The consumption of green tea catechins (GTCs) suppresses age-related cognitive dysfunction in mice. GTCs are composed of several catechins, of which epigallocatechin gallate (EGCG) is the most abundant, followed by epigallocatechin (EGC). Orally ingested EGCG is hydrolyzed by intestinal biota to EGC and gallic acid (GA). To understand the mechanism of action of GTCs on the brain, their permeability of the blood brain barrier (BBB) as well as their effects on cognitive function in mice and on nerve cell proliferation were examined.
Methods: The BBB permeability of EGCG, EGC and GA was examined using a BBB model kit. SAMP10, a mouse model of brain senescence, was used to test cognitive function . Human neuroblastoma SH-SY5Y cells were used to test nerve cell proliferation and differentiation.
Results: The BBB permeability (%, in 30 min) of EGCG, EGC and GA was 2.8±0.1, 3.4±0.3 and 6.5±0.6, respectively. The permeability of EGCG into the BBB indicates that EGCG reached the brain parenchyma even at a very low concentration. The learning ability of SAMP10 mice that ingested EGCG (20 mg/kg) was significantly higher than of mice that ingested EGC or GA. However, combined ingestion of EGC and GA showed a significant improvement comparable to EGCG. SH-SY5Y cell growth was significantly enhanced by 0.05 µM EGCG, but this effect was reduced at higher concentrations. The effect of EGC and GA was lower than that of EGCG at 0.05 µM. Co-administration of EGC and GA increased neurite length more than EGC or GA alone.
Conclusion: Cognitive dysfunction in mice is suppressed after ingesting GTCs when a low concentration of EGCG is incorporated into the brain parenchyma via the BBB. Nerve cell proliferation/differentiation was enhanced by a low concentration of EGCG. Furthermore, the additive effect of EGC and GA suggests that EGCG sustains a preventive effect after the hydrolysis to EGC and GA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614586 | PMC |
http://dx.doi.org/10.1016/j.bbrep.2016.12.012 | DOI Listing |
Pharmacol Rep
September 2025
The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Wulumuqi, Xinjiang, 830011, China.
Curr Pharm Des
September 2025
Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Introduction: Pharmacological studies in vitro demonstrate the preventive and therapeutic potential of green tea and its constituent epigallocatechin-3-gallate (EGCG) in the fight against coronavirus disease 2019 (COVID-19). Previously reported correlations between per capita green tea consumption and COVID-19 morbidity/mortality suggest similar effects in vivo. Considering that some recent SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) sub-variants are less influenced by EGCG, this study aimed to determine whether this affects the aforementioned correlations, focusing on comparisons between the periods before (2021) and after (2022-2024) the emergence of the Omicron variant.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
Epigallocatechin gallate (EGCG), a major catechin in green tea, was selected due to its dietary prevalence and potential synergistic functions with starch. Starch-EGCG complexes represent a form of type 5 resistant starch, but their effects on gut microbiota relative to starch chain-length distribution remain unclear. Using an in vitro fermentation model, we analyzed complexes derived from five starches.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Pediatric Dentistry (Department of Preventive Dentistry), School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China.
Guided bone regeneration (GBR) is a prominent focus in biomedical materials research, yet few studies address practical clinical needs. GBR membranes must fulfill the "PASS" principles to be effective in surgery, but existing membranes often fall short in balancing antibacterial activity, controlled degradation, osteoinductive potential, and mechanical support. In this study, we employed laser powder bed fusion (LPBF) to fabricate a porous WE43 magnesium alloy scaffold suitable for large alveolar bone defects.
View Article and Find Full Text PDFJ Food Sci
September 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
Numerous studies have been conducted on the interaction of β-lactoglobulin (β-LG) with catechins. However, the comparative discussion of multiple catechins interacting simultaneously with β-LG remains unknown. In this study, we comparatively investigated the interaction of three catechins with β-LG in various combinations, such as β-LG-EGCG ((-)-epigallocatechin gallate), β-LG-EGCG-EGC ((-)-epigallocatechin), and β-LG-EGCG-EGC-EC ((-)-epicatechin), and their underlying mechanisms through a series of spectroscopic analyses, molecular docking, and molecular dynamics simulations.
View Article and Find Full Text PDF