Understanding biological systems through the lens of data.

BMC Syst Biol

Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A report of the 10th International Conference on Systems Biology (ISB2016), 19-22 August, Weihai, China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615238PMC
http://dx.doi.org/10.1186/s12918-017-0450-0DOI Listing

Publication Analysis

Top Keywords

understanding biological
4
biological systems
4
systems lens
4
lens data
4
data report
4
report 10th
4
10th international
4
international conference
4
conference systems
4
systems biology
4

Similar Publications

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

Nutritional Symbiosis Between Ants and Their Symbiotic Microbes.

Annu Rev Entomol

September 2025

2Department of Entomology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA; email:

Nutritional symbioses with microorganisms have profoundly shaped the evolutionary success of ants, enabling them to overcome dietary limitations and thrive across diverse ecological niches and trophic levels. These interactions are particularly crucial for ants with specialized diets, where microbial symbionts compensate for dietary imbalances by contributing to nitrogen metabolism, vitamin supplementation, and the catabolism of plant fibers and proteins. This review synthesizes recent advances in our understanding of ant-microbe symbioses, focusing on diversity, functional roles in host nutrition, and mechanisms of transmission of symbiotic microorganisms.

View Article and Find Full Text PDF

The ability to synthesize lichen symbioses in vitro from pure cultures of transformable symbionts would be a game changer for experiments to identify the metabolic interplay that underpins the success of lichens. However, despite multiple reports of successful lichen resynthesis, no lichen lab model system exists today. We reviewed 150 years of in vitro lichen studies and found that the term resynthesis is applied to many types of fungal-photobiont cocultures that do not resemble lichens.

View Article and Find Full Text PDF

Molecular Mechanisms Underlying Parasitoid-Derived Host Manipulation Strategies.

Annu Rev Entomol

September 2025

2Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; email:

Parasitoid wasps are a diverse group of insects with a unique parasitic lifestyle that allows them to spend their lives closely interacting with their insect hosts, facilitated by parasitic effectors, including venom, polydnaviruses, and teratocytes. These effectors manipulate various aspects of insect host biology to increase the survival of the parasitoids' offspring. During the last two decades, omics and functional studies have significantly advanced our understanding of how parasitoids manipulate their hosts at the molecular level.

View Article and Find Full Text PDF