Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2017.07.102DOI Listing

Publication Analysis

Top Keywords

pulsed electric
32
electric fields
32
fields heating
16
tomato fractions
12
lycopene bioaccessibility
12
pulsed
8
fields
8
carotenoids bioaccessibility
8
heating pulsed
8
β-carotene lycopene
8

Similar Publications

Early repolarization pattern with oral liquid nicotine.

BMC Cardiovasc Disord

September 2025

Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany.

While most sudden cardiac deaths are due to structural heart disease or cardiac ischemia, intoxications are rather rare and often unrecognized. Here we present a case of a 35-year-old patient who trickled cumulative 60 mg of the pure nicotine liquid. This led to cardiac arrest and ventricular fibrillation.

View Article and Find Full Text PDF

Electrical pulse generator for electroporation induction in myocytes: Compared effects on skeletal and cardiac cells.

Med Eng Phys

October 2025

Departament of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering (DEEB/FEEC), University of Campinas (UNICAMP), Campinas, SP, Brazil; National Laboratory for Study of Cell Calcium (LabNECC), Center for Biomedical Engineering (CEB), UNICAMP, Campinas, SP, Brazil.

High-intensity, external electric fields (HIEF) have been used in research and therapy for abnormal generation/propagation of the cardiac electrical activity (e.g., defibrillation), and for promoting access of membrane-impermeant molecules into the cytosol through electropores.

View Article and Find Full Text PDF

Amorphous silicon resistors enable smaller pixels in photovoltaic retinal prosthesis.

J Neural Eng

September 2025

Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.

Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.

View Article and Find Full Text PDF

Background: Chagas heart disease (ChD) is a significant public health concern in Latin America, contributing to a high incidence of sudden cardiac death (SCD). Despite advances in heart failure treatment, management of Chagas cardiomyopathy has not progressed accordingly. While ICDs are effective for primary and secondary prevention in other conditions, patients with ChD often experience more frequent episodes of ventricular tachycardia, and ICD use may provide a negative impact and increase mortality.

View Article and Find Full Text PDF

Electrical pulse stimulation (EPS) represents a useful tool to study exercise-related adaptations of muscle cells in vitro. Here, we examine the metabolic and secretory response of primary human muscle cells from metabolically healthy individuals to the EPS protocol reflecting the episodic nature of real-life exercise training. This intermittent EPS protocol alternates high-frequency stimulation periods with low-frequency resting periods.

View Article and Find Full Text PDF