98%
921
2 minutes
20
Somatic progenitors sustain tissue self-renewal while suppressing premature differentiation. Protein arginine methyltransferases (PRMTs) affect many processes; however, their role in progenitor function is incompletely understood. PRMT1 was found to be the most highly expressed PRMT in epidermal progenitors and the most downregulated PRMT during differentiation. In targeted mouse knockouts and in long-term regenerated human mosaic epidermis in vivo, epidermal PRMT1 loss abolished progenitor self-renewal and led to premature differentiation. Mass spectrometry of the PRMT1 protein interactome identified the CSNK1a1 kinase, which also proved essential for progenitor maintenance. CSNK1a1 directly bound and phosphorylated PRMT1 to control its genomic targeting to PRMT1-sustained proliferation genes as well as PRMT1-suppressed differentiation genes. Among the latter were GRHL3, whose derepression was required for the premature differentiation seen with PRMT1 and CSNK1a1 loss. Maintenance of the progenitors thus requires cooperation by PRMT1 and CSNK1a1 to sustain proliferation gene expression and suppress premature differentiation driven by GRHL3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659279 | PMC |
http://dx.doi.org/10.1016/j.devcel.2017.08.021 | DOI Listing |
Int Immunopharmacol
September 2025
Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Graduate Programe in Biomedical Gerontology, School of Medicine, PUCRS, Porto Alegre, Brazil; National Institute of Science and Technology - Neuroimmuno
Rheumatoid arthritis (RA) is a chronic inflammatory condition primarily affecting the peripheral joints while also causing extra-articular complications. Adults with RA show premature aging of the immune system (immunosenescence). Here, we investigated whether senescence T-cell markers and inflammaging remain elevated in older adults with RA.
View Article and Find Full Text PDFNeuroimage Clin
September 2025
Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
Objectives: To examine associations between low cognitive-performance and regional-and network-level brain changes at ages 9-10 in very-preterm, moderately-preterm, and full-term children, and explore whether these alterations predict ASD/ADHD symptoms at age 12.
Methods: This longitudinal population-based study included 9-10-year-old U.S.
New Phytol
September 2025
College of Biology, Hunan University, Changsha, 410082, China.
In legume root nodules, rhizobia invade host cells to form symbiosomes that drive atmospheric nitrogen fixation. Although the metabolic roles of infected cells (ICs) are well established, the contributions of adjacent uninfected cells (UCs) have remained largely unexplored. Here, through forward genetics methods, we identify DEBINO4, a phosphoenolpyruvate carboxylase (PEPC) uniquely expressed in UCs, as a pivotal regulator of carbon metabolism essential for sustaining symbiosome function and nitrogen assimilation.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, China.
Umbilical artery thrombosis (UAT) is an extremely rare but severe obstetric complication associated with adverse perinatal outcomes, including fetal growth restriction (FGR), fetal distress, and intrauterine fetal demise. This case report highlights the diagnostic challenges of UAT and its potential misdiagnosis as a single umbilical artery (SUA). A 32-year-old woman with a history of uncomplicated vaginal delivery was initially misdiagnosed with SUA at 29 3/7 weeks of gestation.
View Article and Find Full Text PDFDev Cogn Neurosci
August 2025
Université Paris Cité, Inserm, NeuroDiderot, Paris F-75019, France; Université Paris-Saclay, CEA, NeuroSpin, UNIACT, Gif-sur-Yvette F-91191, France.
The sensorimotor system develops early in utero and supports the emergence of body representations critical for perception, action, and interaction with environment. While somatotopic protomaps are already developed in the primary somatosensory and motor cortices in late pregnancy, little is known about the anatomical substrates of this functional specialization. In this study, we aimed to decipher the microstructural properties of these regions in the developing brain.
View Article and Find Full Text PDF