98%
921
2 minutes
20
We report an effect of giant surface modification of a 5.6 nm thick BaTiO₃ film grown on Si (100) substrate under poling by conductive tip of a scanning probe microscope (SPM). The surface can be locally elevated by about 9 nm under -20 V applied during scanning, resulting in the maximum strain of 160%. The threshold voltage for the surface modification is about 12 V. The modified topography is stable enough with time and slowly decays after poling with the rate ~0.02 nm/min. Strong vertical piezoresponse after poling is observed, too. Combined measurements by SPM and piezoresponse force microscopy (PFM) prove that the poled material develops high ferroelectric polarization that cannot be switched back even under an oppositely oriented electric field. The topography modification is hypothesized to be due to a strong Joule heating and concomitant interface reaction between underlying Si and BaTiO₃. The top layer is supposed to become ferroelectric as a result of local crystallization of amorphous BaTiO₃. This work opens up new possibilities to form nanoscale ferroelectric structures useful for various applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615760 | PMC |
http://dx.doi.org/10.3390/ma10091107 | DOI Listing |
J Colloid Interface Sci
September 2025
Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
Urea electrolysis holds tremendous promise to remediate urea-containing wastewater and produce cost-effective hydrogen. Achieving highly efficient and durable electrocatalysts to drive the anodic urea oxidation reaction (UOR) is paramount to promote its practical applications. Herein, electroless deposition, a scalable, cost-effective, and energy-saving approach, is used to obtain amorphous Ni-Co-P nanoparticles.
View Article and Find Full Text PDFPLoS One
September 2025
Comet Research Group, Prescott, Arizona, United States of America.
Shocked quartz grains are an accepted indicator of crater-forming cosmic impact events, which also typically produce amorphous silica along the fractures. Furthermore, previous research has shown that shocked quartz can form when nuclear detonations, asteroids, and comets produce near-surface or "touch-down" airbursts. When cosmic airbursts detonate with enough energy and at sufficiently low altitude, the resultant relatively small, high-velocity fragments may strike Earth's surface with high enough pressures to generate thermal and mechanical shock that can fracture quartz grains and introduce molten silica into the fractures.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.
View Article and Find Full Text PDFInt J Cosmet Sci
September 2025
Smart Foods and Bioproducts, AgResearch, Lincoln, New Zealand.
Objective: This study investigated the locations of amino acid modifications within two major human hair keratins (Type I K31 and Type II K85) with probable implications for protein and hair structural component integrity. The particular focus was on cysteine modifications that disrupt intra-protein and inter-protein disulphide bonds.
Methods: Human hair was exposed to accelerated, sequential heat or UV treatments, simulating effects resulting from the use of heated styling tools and environmental exposure over a time frame approximating one year.
J Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDF