Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epidemiologic and animal studies suggest a protective role of green tea against breast cancer. However, the underlying mechanism is not understood. We conducted a randomized, double-blinded, placebo-controlled phase II clinical trial to investigate whether supplementation with green tea extract (GTE) modifies mammographic density (MD), as a potential mechanism, involving 1,075 healthy postmenopausal women. Women assigned to the treatment arm consumed daily 4 decaffeinated GTE capsules containing 1,315 mg total catechins, including 843 mg epigallocatechin-3-gallate (EGCG) for 12 months. A computer-assisted method (Madena) was used to assess MD in digital mammograms at baseline and month 12 time points in 932 completers (462 in GTE and 470 in placebo). GTE supplementation for 12 months did not significantly change percent MD (PMD) or absolute MD in all women. In younger women (50-55 years), GTE supplementation significantly reduced PMD by 4.40% as compared with the placebo with a 1.02% PMD increase from pre- to postintervention ( = 0.05), but had no effect in older women ( = 0.07). GTE supplementation did not induce MD change in other subgroups of women stratified by catechol--methyltransferase genotype or level of body mass index. In conclusion, 1-year supplementation with a high dose of EGCG did not have a significant effect on MD measures in all women, but reduced PMD in younger women, an age-dependent effect similar to those of tamoxifen. Further investigation of the potential chemopreventive effect of green tea intake on breast cancer risk in younger women is warranted. .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337967PMC
http://dx.doi.org/10.1158/1940-6207.CAPR-17-0187DOI Listing

Publication Analysis

Top Keywords

green tea
16
breast cancer
12
gte supplementation
12
younger women
12
women
10
tea extract
8
mammographic density
8
postmenopausal women
8
reduced pmd
8
supplementation
6

Similar Publications

YAP/TAZ are transcriptional co-activators that pair with transcription factor TEA/ATTS domains (TEADs) for modulating the Hippo pathway. Previous works propose the potential role of YAP/TAZ phase separation for transcriptional activation, yet the biomolecular basis of endogenous YAP/TAZ-TEAD condensates remains unclear. Here, we dissect their endogenous morphology, revealing that YAP/TAZ are client proteins recruited to TEAD condensates in various human cell lines.

View Article and Find Full Text PDF

Tigliane glycosides from Euphorbia tirucalli as multidrug resistance modulators.

Bioorg Chem

September 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. Electronic address:

Chemical investigation of the twigs and leaves of Euphorbia tirucalli afforded six undescribed tigliane glycosides, tirucalosides A-F (1-6), together with 12 known diterpenoids (7-18). Compound 1 represents a rare carbon skeleton bearing a 5/7/5/4-fused ring system, while compound 6 contains an unusual seco-glucoside substitution. Their structures were determined by a combination of an extensive spectroscopic analysis and acid hydrolysis experiment.

View Article and Find Full Text PDF

Kinetic and Mechanistic Discrepancies of Single/Dual-Atom Nanozymes Drive a Triple-Channel Sensing Array for Machine Learning-Assisted Antioxidant Discrimination.

Anal Chem

September 2025

Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.

Current colorimetric sensing arrays for antioxidant detection often struggle with discrimination due to cross-reactive signals from individual nanozymes. These signals are typically modulated by external factors such as pH or chromogenic substrates, offering limited kinetic and mechanistic diversity. To overcome this, we present a novel triple-channel colorimetric sensing array utilizing two distinct single-atom nanozymes (Cu SA and Fe SA) and one dual-atom nanozyme (CuFe DA).

View Article and Find Full Text PDF

CsWRKY15 from tea plant promotes its auto-resistance when intercropped with chestnut.

Plant Cell Physiol

September 2025

Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China.

To explore the role of WRKY transcription factors in resistance, a WRKY15 homologous gene, CsWRKY15, and its promoter were isolated from tea plants when intercropped with chestnut. CsWRKY15 expression was significantly induced by ethephon, polyethylene glycol (PEG), and low temperature. Notably, its expression was strongly induced by exogenous gibberellic acid (GA3).

View Article and Find Full Text PDF

Astringency is a complex oral sensation characterized by dryness and constriction in the mouth. It is typically induced by polyphenol-rich foods and beverages such as wine and tea. The quantitative assessment of astringency intensity has become a prominent research focus in the food science field.

View Article and Find Full Text PDF