Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The clinical significance of KRAS codon 13 mutation in patients with colorectal cancer (CRC) remains controversial. A systematic review and meta-analysis is necessary for a more precise estimation of the predictive role of KRAS codon 13 mutations in CRC patients.

Methods: We performed a systematic search using the MEDLINE, EMBASE, and Cochrane library databases from January 2000 to November 2016. The prognostic value of KRAS codon 13 mutation for overall survival (OS) was investigated by measuring the hazard ratio (HR) and 95% confidence interval (CI). Data were analyzed with Review Manager Version 5.3 and the Canadian Agency for Drugs and Technologies in Health software.

Results: OS in CRC patients with KRAS codon 13 mutation was worse than that in CRC patients with KRAS wild-type (pooled HR = 1.37, 95% CI: 1.03-1.81, P = .03). Subgroup analysis of studies of enrolled CRC patients treated with antiepidermal growth factor receptor (EGFR) therapy showed no significant difference in OS associated with KRAS codon 13 mutation in comparison to KRAS wild-type (pooled HR = 1.57, 95% CI: 0.98-2.51, P = .06). In the indirect comparison, no statistically significant association was observed between codon 12 and 13 mutations for OS in CRC patients (pooled HR = 0.88, 95% CI: 0.65-1.20, P = .43).

Conclusion: The current meta-analysis suggests that Codon 13 mutation of KRAS gene seems to correlate with the OS of patients with CRC, but has similar OS to those with KRAS wild-type in patients receiving anti-EGFR therapy. No difference was detected in the OS of CRC patients with codon 13 mutation versus codon 12 mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585496PMC
http://dx.doi.org/10.1097/MD.0000000000007882DOI Listing

Publication Analysis

Top Keywords

codon mutation
28
kras codon
24
crc patients
20
kras wild-type
12
codon
10
kras
9
prognostic kras
8
mutation
8
mutation survival
8
colorectal cancer
8

Similar Publications

Rationale: Weaver syndrome is a rare congenital overgrowth disorder characterized by a wide spectrum of clinical manifestations that often overlap with other overgrowth syndromes. It is primarily caused by pathogenic variants in the Enhancer of Zeste Homolog 2 (EZH2) gene on chromosome 7q36.1.

View Article and Find Full Text PDF

Introduction: TNM staging systems create prognostic categories by anatomic extent of disease. Whether therapeutically important molecular alterations in NSCLC augment the prognostic information of TNM staging is unclear. To study this, we analyzed molecular data from the ninth edition of the lung cancer staging system.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is an inherited blood disorder marked by the production of abnormal hemoglobin, leading to the distortion-or sickling-of red blood cells. The SCD arises from a single-point mutation that substitutes glutamic acid with valine at the sixth codon of the β-globin chain in hemoglobin. This substitution promotes deoxyhemoglobin aggregation, elevating red blood cell stiffness, and triggering vaso-occlusive and hemolytic repercussions.

View Article and Find Full Text PDF

The AUA isoleucine codon is generally rare and used with varying frequency in bacterial genomes. The tRNA responsible for decoding this trinucleotide must be modified at the wobble position by tRNA lysidine synthetase (TilS) prior to aminoacylation and accommodation at the ribosome. To test the hypothesis that TilS catalytic efficiency correlates with AUA frequency, we cloned tilS genes from bacteria with varying AUA codon usage.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNA with their cognate amino acids, an essential step in protein biosynthesis. While biallelic mutations in aaRSs often result in severe multi-organ dysfunction accompanied by developmental delays, monoallelic mutations typically cause milder, tissue-specific symptoms. However, a de novo monoallelic nonsense mutation (R534*) in the asparaginyl-tRNA synthetase (AsnRS)-resulting in a premature stop codon and 15-residue C-terminal truncation-has been identified in multiple families and is associated with severe neurodevelopmental symptoms.

View Article and Find Full Text PDF