Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interleukin-like epithelial-to-mesenchymal transition (EMT) inducer (ILEI)/FAM3C is a member of the highly homologous FAM3 family and is essential for EMT and metastasis formation. It is upregulated in several cancers, and its altered subcellular localization strongly correlates with poor survival. However, the mechanism of ILEI action, including the structural requirements for ILEI activity, remains elusive. Here, we show that ILEI formed both monomers and covalent dimers in cancer cell lines and in tumors. Using mutational analysis and pulse-chase experiments, we found that the four ILEI cysteines, conserved throughout the FAM3 family and involved in disulfide bond formation were essential for extracellular ILEI accumulation in cultured cells. Modification of a fifth cysteine (C185), unique for ILEI, did not alter protein secretion, but completely inhibited ILEI dimerization. Wild-type ILEI monomers, but not C185A mutants, could be converted into covalent dimers extracellularly upon overexpression by intramolecular-to-intermolecular disulfide bond isomerization. Incubation of purified ILEI with cell culture medium showed that dimerization was triggered by bovine serum in a dose- and time-dependent manner. Purified ILEI dimers induced EMT and trans-well invasion of cancer cells in vitro. In contrast, ILEI monomers and the dimerization-defective C185A mutant affected only cell motility as detected by scratch assays and cell tracking via time-lapse microscopy. Importantly, tumor cells overexpressing wild-type ILEI caused large tumors and lung metastases in nude mice, while cells overexpressing the dimerization-defective C185A mutant behaved similar to control cells. These data show that covalent ILEI self-assembly is essential for EMT induction, elevated tumor growth, and metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14207DOI Listing

Publication Analysis

Top Keywords

ilei
14
interleukin-like epithelial-to-mesenchymal
8
epithelial-to-mesenchymal transition
8
transition emt
8
emt inducer
8
fam3 family
8
essential emt
8
covalent dimers
8
disulfide bond
8
wild-type ilei
8

Similar Publications

Enzyme-Mimicking Active Site Clefts Demonstrated by Self-Assembled Peptide Nanoribbons with Polar Zippers.

ACS Appl Mater Interfaces

June 2025

Department of Biological and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.

Due to the inherent limitations of natural enzymes, biomimetic enzymes have received tremendous attention, among which those arising from peptide self-assembly are of particular interest due to their resemblance to natural enzymes in composition and hierarchical structures, as well as their structural robustness and designability. Despite considerable advances achieved in this area, it remains a major challenge to construct active site clefts through peptide self-assembly. Here, we report the design of polar zippers between peptide β-sheets to mimic the catalytic microenvironment of natural enzymes.

View Article and Find Full Text PDF

Streptococcus spp. are important opportunistic pathogen of bacteremia in both immunocompetent and immunosuppressed patients. A streptococcal strain, designated ST2, was isolated from the blood specimen of a bacteremic patient.

View Article and Find Full Text PDF

Brain amyloid-β (Aβ) governs the pathogenic process of Alzheimer's disease. Clinical trials to assess the disease-modifying effects of inhibitors or modulators of β- and γ-secretases have not shown clinical benefit and can cause serious adverse events. Previously, we found that the interleukin-like epithelial-to-mesenchymal transition inducer (ILEI, also known as FAM3C) negatively regulates the Aβ production through a decrease in Aβ immediate precursor, without the inhibition of β- and γ-secretase activity.

View Article and Find Full Text PDF

The poly(rC) binding protein 1 gene (PCBP1) encodes the heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1), a nucleic acid-binding protein that plays a tumor-suppressive role in the mammary epithelium by regulating phenotypic plasticity and cell fate. Following the loss of PCBP1 function, the FAM3C gene (encoding the Interleukin-like EMT inducer, or "ILEI" protein) and the leukemia inhibitory factor receptor (LIFR) gene are upregulated. Interaction between FAM3C and LIFR in the extracellular space induces phosphorylation of signal transducer and activator of transcription 3 (pSTAT3).

View Article and Find Full Text PDF

FAM3C/ILEI is an important factor in epithelial-to-mesenchymal transition (EMT) induction, tumor progression and metastasis. Overexpressed in many cancers, elevated ILEI levels and secretion correlate with poor patient survival. Although ILEI's causative role in invasive tumor growth and metastasis has been demonstrated in several cellular tumor models, there are no available transgenic mice to study these effects in the context of a complex organism.

View Article and Find Full Text PDF